
MALGUARD: Towards Real-Time, Accurate, and Actionable Detection of
Malicious Packages in PyPI Ecosystem

Xingan Gao1 Xiaobing Sun1,† Sicong Cao1,† Kaifeng Huang2 Di Wu3 Xiaolei Liu 4

Xingwei Lin5 Yang Xiang 6

1Yangzhou University 2Tongji University 3University of Southern Queensland
4China Academy of Engineering Physics 5Zhejiang University 6Swinburne University of Technology

Abstract
Malicious package detection has become a critical task in

ensuring the security and stability of the PyPI. Existing detec-
tion approaches have focused on advancing model selection,
evolving from traditional machine learning (ML) models to
large language models (LLMs). However, as the complexity
of the model increases, the time consumption also increases,
which raises the question of whether a lightweight model
achieves effective detection. Through empirical research, we
demonstrate that collecting a sufficiently comprehensive fea-
ture set enables even traditional ML models to achieve out-
standing performance. However, with the continuous emer-
gence of new malicious packages, considerable human and
material resources are required for feature analysis. Also, tra-
ditional ML model-based approaches lack of explainability to
malicious packages. Therefore, we propose a novel approach
MALGUARD based on graph centrality analysis and the LIME
(Local Interpretable Model-agnostic Explanations) algorithm
to detect malicious packages. To overcome the above two
challenges, we leverage graph centrality analysis to extract
sensitive APIs automatically to replace manual analysis. To
understand the sensitive APIs, we further refine the feature
set using LLM and integrate the LIME algorithm with ML
models to provide explanations for malicious packages. We
evaluated MALGUARD against six SOTA baselines with the
same settings. Experimental results show that our proposed
MALGUARD, improves precision by 0.5%-33.2% and recall
by 1.8%-22.1%. With MALGUARD, we successfully identi-
fied 113 previously unknown malicious packages from a pool
of 64,348 newly-uploaded packages over a five-week period,
and 109 out of them have been removed by the PyPI official.

1 Introduction

Python has emerged as the most popular programming lan-
guage [4]. However, threats against Python language packages

†Xiaobing Sun and Sicong Cao are co-corresponding authors.

have been arising in recent years [33, 34]. According to a re-
cent report [1] from Sonatype, a total of 704,102 malicious
packages have been discovered in third-party registries by
2024, marking a year-on-year increase of more than 156%.
As the official package registry for Python, the Python Pack-
age Index (PyPI) [2] hosts a vast array of rapidly evolving
packages and their dependencies. Simultaneously, it has led
to a growing number of security problems in the PyPI reg-
istry [12–14, 18, 23, 38]. For example, a Windows Trojan
“lumma” [36] targeting cryptocurrency wallets and browser ex-
tensions has extended to the PyPI registry. Attackers dropped
a malicious package named crytic-compilers-0.3.9 onto the
PyPI registry, intending to steal private information by ty-
posquatting the well-known popular package crytic-compile.

To mitigate such security threats, an intuitive way is to reg-
ularly scan PyPI packages. Early studies primarily employed
static analysis and/or Machine Learning (ML) [5, 15, 19, 28,
35, 39, 46] to identify malicious features. However, hand-
crafted expert rules are hard to obtain and difficult to keep
pace with the rapidly evolving malicious behaviors [23]. To
improve the usability of the existing approaches and avoid the
intense labor of human experts on feature extraction, recent
works investigate the potential of Large Language Models
(LLMs) in a more automated way of malicious package detec-
tion [37,45,46]. For example, Zhang et al. [46] fine-tuned the
BERT model [17] to understand the semantics of sequential
malicious behaviors.

Despite their effectiveness, fine-tuning a dedicated LLM is
accompanied by considerable computational overhead, while
directly invoking commercial LLMs (e.g., ChatGPT) via API
will entail significant deployment cost when dealing with
massive packages within the PyPI ecosystem [50]. Therefore,
it motivates us to explore a simple yet effective approach
that can strike a balance between effectiveness and overhead,
aligning with the requirements of real-time and accurate de-
tection needed in industrial settings.

To this end, we first performed an empirical study that aims
to investigate whether simple ML models can achieve compa-
rable effectiveness to LLMs in malicious package detection.

First, we constructed a feature set of 132 dimensions. Using
this feature set, we performed feature extraction and trained
five traditional ML models. i.e., Random Forest (RF), Naive
Bayes (NB), Extreme Gradient Boosting (XGBoost) [11],
Multilayer Perceptron (MLP), and Support Vector Machine
(SVM). Our experimental results show that the RF model
performs the best among all five ML models that we selected.
While the precision is slightly lower than EA4MP, CERE-
BRO, and GPT-3.5-turbo [30], the difference is negligible.
Importantly, the RF model exhibits significantly higher recall
compared to these two state-of-the-art (SOTA) approaches.
It indicates that with a comprehensive feature set, we can
achieve comparable detection accuracy with a lightweight
model. Furthermore, while pre-training or fine-tuning LLMs
typically requires several hours to even tens of hours, it takes
approximately 5 seconds to train ML models and less than
1 second to perform malicious detection per package. The
high efficiency enables ML model-based malicious package
detection to perform real-time detection on newly updated
packages.

Nevertheless, we summarize two remaining challenges for
ML models that can hinder the effectiveness of malicious
package detection:

• Challenge 1 (C1): Reducing Dependency on Manually
Pre-defined Feature Sets. Quality features lead to better
performance, but existing approaches often rely on manual
analysis of malicious packages to construct these feature
sets. As time progresses, the dataset is continuously aug-
mented with new malicious package samples, necessitating
ongoing manual effort from security professionals to ana-
lyze their characteristics. This process is resource-intensive
and may miss critical features.

• Challenge 2 (C2): Generate Explainable Outputs of
Suspicious Behaviors for Malicious Packages. Current
detection efforts tend to focus on binary classification tasks
for identifying malicious packages. However, once a ma-
licious package is identified, administrators must spend
significant time manually verifying its behavior. Although
GuardDog [16] provides descriptions of suspicious APIs
found in malicious packages, its rule-based approach re-
quires extensive manual effort to define specific rules and
lacks comprehensive analysis of the APIs [10]. Further as-
sistance is needed to help administrators understand which
sensitive APIs are being used in malicious packages and to
identify their potential malicious purposes [41], which has
received little attention in prior work.

To address the two challenges, we propose a novel mali-
cious package detection approach MALGUARD.

To address C1, we employ static analysis methods to con-
struct API call graphs for each malicious package and com-
pute the centrality value of individual APIs. We then average
the centrality values of APIs with the same name across dif-
ferent samples. Based on these averaged scores, we rank the

APIs and select the top-K as the sensitive API feature set.
To enhance the precision of the identified sensitive APIs,
we employ role-based prompt engineering and utilize LLM
(GPT-3.5-turbo) to assess the top-K candidates. To address
C2, we leverage LLM to analyze each sensitive API and infer
its potential malicious purposes. This resulted in a ground
truth dataset containing suspicious API names and their po-
tential malicious behaviors. Notably, our approach requires
only one query to the LLM per sensitive API. The feature set
is incrementally updated as new sensitive APIs emerge.

Using this feature set, we extracted the feature vector from
the dataset and trained ML models integrated with the LIME
algorithm. The algorithm identifies the top 10 influential
non-zero features in the model’s decision-making process.
These features are then cross-referenced with the {API_name
: API_malbehavior} Ground_truth dataset to generate detailed
explanation outputs for each malicious package. These out-
puts provide a clear explanation of the malicious behavior
associated with the identified sensitive APIs for researchers
to verify these packages.

Prior approaches rely on manually refined feature sets. In
comparison, our approach leverages graph centrality analysis
and automates feature extraction with the assistance of LLMs,
eliminating the need for manually predefined feature sets.
In addition, we incorporate the LIME algorithm to generate
explanations for the malicious packages.

Moreover, our work involves more than just simple name-
based retrieval operations. We also sorted the APIs by their
invocation order within each file and systematically output
the content of these explanations. This ordered presentation
facilitates a better understanding of malicious packages for
researchers, providing them with clearer insights into the se-
quence and context in which APIs are used.

We evaluated MALGUARD against six SOTA baselines
on the new dataset, which consists of malicious packages
collected from Guo et al. [23] and Sun et al. [37]. Experi-
mental results show that MALGUARD improves precision by
0.5%-33.2% and recall by 1.8%-22.1%. We monitored 64,348
software packages uploaded on PyPI between December 21,
2024, and January 28, 2025, and successfully identified 113
previously unknown malicious packages. We reported these
malicious packages to PyPI officials, and 109 of them have
been removed.

The contributions of our paper are as follows:

• We propose MALGUARD, a novel approach based on
Social-network Graph Centrality to detect malicious PyPI
packages.

• We collected a feature set containing 132 features to con-
duct our empirical study and demonstrate that, with a suffi-
ciently comprehensive feature set, lightweight models can
achieve effectiveness comparable to LLMs.

• We use LLMs and ML models to achieve explainability in
malicious package detection.

Table 1: Statistics of the constructed dataset.

Dataset #Malicious #Benign

Guo et al. [23] 9,148 -
Sun et al. [37] 516 -

Our work - 10,000

Total 9,664 10,000

• MALGUARD has uncovered 113 previously unknown ma-
licious packages. We reported these packages to PyPI offi-
cials, and 109 of them have been removed.

2 Empirical Study

Since attacks on the PyPI platform are ongoing and contin-
uously evolving, it is necessary to update detection models
with newly emerging malicious samples. Notably, existing
SOTA approaches, such as CEREBRO and EA4MP, rely on
fine-tuning large pre-trained models, and such fine-tuning
incurs substantial time and computational costs. In this sec-
tion, we conduct two empirical studies. First, we investigate
whether lightweight ML models can achieve detection ef-
fectiveness comparable to SOTA approaches. Second, we
examine how temporal differences (i.e., the time gap between
training and test samples) affect models’ effectiveness.

2.1 Dataset

Malicious Sample. Since the detection capability of
learning-based approaches benefits from large-scale and high-
quality datasets, we built our evaluation benchmark by merg-
ing two reliable human-labeled datasets collected from real-
world Python packages, including Guo et al. [23] and Sun et
al. [37]. Detailed statistics for the two datasets are shown in
Table 1. In total, our merged dataset contains 9,664 malicious
PyPI packages.
Benign Sample. We randomly sampled 10,000 popular pack-
ages from PyPI. Following [28, 37], a package will be con-
sidered as benign if it has been (❶) hosted on PyPI for more
than 90 days and (❷) downloaded over 1,000 times.

2.2 Baseline
To evaluate the differences between LLMs and ML models
in malicious package detection, we compared our approach
with two of the latest SOTA approaches: Zhang et al. [46]
proposed CEREBRO, an approach for extracting code behav-
ior sequences using abstract syntax trees (AST). By analyz-
ing the AST, they extracted available APIs to form code se-
quences that describe malicious behaviors. These sequences

Table 2: The categories of 132 different APIs in Feature Set.

Categories API example

File-system access

os.mkdir()
os.remove

shutil.copy()
write()

...

Process creation

subprocess.Popen
multiprocessing.Process

threading.Thread
...

Network access

socket.socket()
requests

request.urlopen()
...

Data encode & decode
base64.b64encode()
base64.b64decode()

...

Package install
install.run()
pip.main()

...

System access
os.getenv()
os.getcwd()

...

were then used as input for fine-tuning a BERT model. Sim-
ilarly, Sun et al. [37] introduced an integrated detection ap-
proach based on deep code behavior sequences and metadata.
Their approach used static analysis tools to extract control-
flow graphs (CFGs) and call graphs (CGs) to generate code
behavior sequences, which were subsequently fine-tuned with
the BERT model. We leveraged the one-shot technique along
with role-based promoting to analyze the test dataset1 using
GPT-3.5-turbo [30]. All these approaches have demonstrated
exceptional effectiveness in their respective datasets, so we
chose them as the benchmarks for comparison.

2.3 Study 1: Effectiveness Comparison of ML
Models and LLM-based Approaches

Experiment Setup.
To evaluate whether traditional ML models can achieve

competitive effectiveness compared to LLM-based ap-
proaches in malicious package detection, we conducted exper-
iments using five widely adopted ML classifiers: Extreme Gra-
dient Boosting (XGBoost), Random Forest (RF), Naive Bayes
(NB), Support Vector Machine (SVM), and Multi-Layer Per-
ceptron (MLP). To ensure the quality of the feature set, we
manually analyzed 9,664 malicious packages and incorpo-

1For cost considerations, we randomly selected 300 benign packages
and 300 malicious packages from the dataset for testing when conducting
experiments with ChatGPT.

Table 3: Effectiveness comparison of five different ML models and LLM-based approaches on the same dataset.

Group Model Precision (%) Recall (%) F1 score (%)
Time Consumption

Pre-process (s/package) Train (s)

ML

NB 55.2 98.4 70.7

0.8457

0.19467

XGBoost 98.1 98.4 98.2 4.79

RF 98.5 98 98.2 1.0126

SVM 89.2 94.7 91.9 0.097

MLP 98.1 98.2 98.1 22.85157

PTM
EA4MP [37] 99.1 95.4 97.2 6.28 30,741.67

CEREBRO [46] 98.6 85.7 91.7 12.489 2,439

LLM GPT-3.5-turbo [30] 99.0 99.3 99.1 - -

Table 4: Temporal partitioning of the dataset.

Year 2021 2022 2023 2024

Counts 227 1,054 6,412 1,971

rated features identified in previous studies. This process
yielded a comprehensive feature set with 132 dimensions.
These features were further organized into six distinct cate-
gories, as summarized in Table 2.
Result. The experimental results are shown in Table 3.
Four ML (i.e., XGBoost, RF, SVM, and MLP) models ex-
hibited effectiveness comparable to LLM-based approaches.
Among them, Random Forest (RF) and XGBoost models per-
formed particularly well, achieving precision and recall rates
of 98.0% and 98.2%, respectively. The Naive Bayes (NB)
model yielded a lower precision of 55.2%, underperforming
than LLM-based methods. GPT-3.5-turbo achieved the high-
est recall and F1 score among all approaches, highlighting the
inherent advantage of large language models in understand-
ing code semantics. Nonetheless, the effectiveness gap is not
substantial. For instance, the Random Forest model achieved
an accuracy only 0.5% lower and a recall rate just 1.3% lower
than that of GPT-3.5-turbo. Compared to EA4MP and CERE-
BRO, while their precision (slightly below EA4MP’s 99.1%
and CEREBRO‘s 98.6%) is marginally lower, ML models’
recall and F1 scores are significantly higher.

Moreover, in terms of time efficiency, we found that for
ML models, feature vector extraction can be achieved using
simple static analysis tools or even regular expression match-
ing, requiring an average of only 0.0035 seconds per package.
Training an ML model takes 0.097 to 22.85 seconds, which is
significantly faster compared to EA4MP’s 6.28 seconds and
CEREBRO‘s 12.489 seconds per package and time required to
fine-tune a BERT model. This highlights the significant time

advantage of ML models.

2.4 Study 2: Robustness Against PyPI Mali-
cious Packages

Experiment Setup. To evaluate the resilience of existing
approaches and ML models in malicious package detection,
we partitioned the malicious package dataset chronologically,
as detailed in Table 4. To ensure the validity of the evaluation,
we selected an equal number of popular benign packages from
each year, maintaining a 1:1 ratio between benign and mali-
cious samples. Given that the number of malicious packages
in 2021 was relatively limited and significantly fewer than
in subsequent years, we merged the samples from 2021 and
2022 to form the training set. The models were then evaluated
separately on samples from 2023 and 2024. Based on the
newly defined training set, we reanalyzed the feature distribu-
tions and reconstructed the feature set. For ML models, we
selected four classifiers that demonstrated strong effective-
ness in Study 1: XGBoost, RF, SVM, and MLP. Since we
are unable to locally fine-tune or deploy GPT-3.5-turbo, we
chose EA4MP, which achieves effectiveness second only to
GPT-3.5-turbo, as the baseline for comparison.
Result. The experimental results, as shown in Table 5,
demonstrate that with the addition of new samples, models
trained solely on outdated data experience a notable effec-
tiveness decline. For instance, in the case of ML models, the
XGBoost model shows only a modest drop in precision (from
88.2% to 81.5%), yet its recall plummets significantly from
80.3% to 53.4%, indicating that a large portion of newly up-
loaded malicious samples cannot be effectively detected by
the old model. Similarly, the F1 score of EA4MP decreases
from 92.7% to 71.6%, reflecting a degradation in its detection
capability.

Combined with the findings from Study 1, it is evident that
both ML-based and LLM-based approaches require continu-

Table 5: Effectiveness comparison of different ML models and LLM-based approaches on newer samples by training an old
dataset.

XGBoost RF SVM MLP EA4MP

Metrics (%) Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

2021&2022 88.2 80.3 84.1 97.1 82.0 88.9 88.6 80.3 84.2 95.3 80.6 87.3 94.7 90.7 92.7
2023 86.4 59.0 70.1 90.1 59.3 71.5 83.3 49.2 61.9 87.3 62.1 72.6 81.6 84.3 82.9
2024 81.5 53.4 64.5 72.6 52.1 60.7 75.4 51.0 60.8 79.6 57.1 66.5 72.7 70.5 71.6

ous updates with new data to maintain detection effectiveness.
Compared to LLM-based approaches, ML models offer the
advantage of faster iteration. Moreover, it is important to em-
phasize that while ML models may achieve detection effec-
tiveness comparable to LLMs, constructing a comprehensive
and high-quality feature set remains a major challenge. In
our study, three master’s students spent over a week analyz-
ing 9,664 malicious packages to develop the final feature set
consisting of 132 dimensions, amounting to 21 person-hours.
Therefore, it is essential to develop a solution that supports
efficient and automated feature set updates to enable timely
and scalable model iteration.

3 API Call Graph Based Centrality Analysis

To enable automated extraction and rapid iteration of the fea-
ture set, we draw inspiration from Android malware detection,
where graph centrality analysis has proven to be effective in
identifying frequently invoked sensitive APIs. In this sec-
tion, we provide a detailed description of the API Call Graph
and the application of centrality analysis. Furthermore, we
investigate whether there exist significant differences in API
invocation patterns between benign and malicious packages
within the PyPI ecosystem.

3.1 API Call Graph and Centrality Analysis

API Call Graph. The Application Programming Interface
(API) Call Graph is a commonly used data structure in static
or dynamic program analysis [6], designed to abstract the
calling relationships among various API functions within a
software system. In such a graph, each node represents an
API function, method, or module, while edges denote the di-
rection of invocation (i.e., the source node calls the target
node). Compared to traditional structures such as the Control
Flow Graph (CFG), the API Call Graph focuses more on high-
level semantic invocation logic. API call graphs have been
extensively employed in the security domain for malware
detection [37, 44, 51], where they facilitate the identification
of potential threats through the analysis of abnormal invoca-
tion patterns and frequent co-occurrence of malicious API
sequences.
Centrality Analysis. Centrality metrics commonly used in
social network analysis, such as degree centrality [21], Katz

centrality [24], closeness centrality [21], and harmonic central-
ity [29], have been widely applied in Android malware detec-
tion tasks [42,51]. Studies have shown that these metrics effec-
tively capture the behavioral characteristics of critical nodes
within malicious code, thereby enhancing the discriminative
power of detection models. Structurally, API call graphs share
fundamental modeling similarities with social network graphs
in both form and graph-theoretic properties. Both can be for-
malized as directed graphs, where nodes represent individual
entities (typically users or actors in social networks, and func-
tions, methods, or class modules in API call graphs), while
edges denote interactions, such as social connections in the
former and invocation or execution dependencies in the latter.
These graph types also exhibit similar topological proper-
ties. For example, their node degree distributions often follow
a power-law pattern, where a small number of nodes (e.g.,
frequently invoked functions or influential users) possess dis-
proportionately high connectivity, while most nodes remain
peripheral. Moreover, both types of graphs tend to form lo-
cal clusters or community structures—subgraphs where node
connectivity is significantly denser than the global average.
These structures often correspond to functionally cohesive
modules (such as attack chains) or social communities.

3.2 Difference between Malicious and Benign
Packages

To verify whether malicious PyPI packages share similar
traits with Android malware, we constructed API call graphs
for both benign and malicious packages in the dataset and
calculated the centrality values of APIs to compare their dif-
ferences. The Experiment results highlight significant dif-
ferences in API usage tendencies between benign and mali-
cious packages. For instance, in the malicious package dataset,
APIs such as exists, subprocess.Popen, os.getenv, install.run,
b64decode, and encode are frequently invoked. Attackers
often use os.getenv to evade dynamic analysis tools, subpro-
cess.Popen to create malicious processes, and advanced at-
tackers may employ APIs like b64decode to obfuscate data,
making detection more challenging. In contrast, benign pack-
ages tend to favor simpler APIs for data processing, such as
int, str, list, and print. Due to the limitation of the length of
the article, we only present the top 10 APIs ranked by central-
ity scores calculated for both benign and malicious package
datasets using four different centrality metrics in Table 6.

Table 6: The top 10 APIs calculated with different centrality
in malicious&benign packages.

Closeness Degree Harmonic Katz

Malicious

setup setup join setup
exists exists open exists
subprocess.Popen subprocess.Popen decode subprocess.Popen
open join getattr open
join open encode join
range range map install.run
getattr aetattr exists exec
map map os.getenv format
os.getenv exec replace os.getenv
install.run os.getenv b64decode expanduser

Benign

open open len setup
len len join open
setup setup str len
print join isinstance join
str print open print
isinstance str int str
int isinstance list isinstance
format int print int
list range append range
super format super list

To address these discrepancies, we propose a detection
tool based on API call graph centrality and ML models. For
each malicious package, we generate an API call graph and
compute the centrality value for its nodes. By aggregating and
averaging the centrality scores of nodes with the same API
name across all malicious packages, we rank the APIs based
on their averaged centrality scores. We then select the top
K (K= 200,300,400,500) APIs as the feature set for feature
vector extraction. Using these extracted feature vectors, we
train an ML model to detect malicious packages effectively.

4 MALGUARD: Graph Centrality and ML-
Based Malicious Package Detection

To automate the extraction of sensitive API feature sets
and train ML models for malicious package detection, and
improve the explainability of ML models, we propose a novel
approach: MALGUARD. The workflow of MALGUARD, illus-
trated in Figure 1, comprises Four main steps: Step 1: API
Call Graph Generation. We perform static analysis on each
malicious package to extract its AST. Based on the AST, we
generate an API call graph and calculate the centrality values
of its nodes. Step 2: Sensitive API Feature Set Extraction
and Filter. We compute the centrality values of all nodes
across the malicious packages, summing, averaging, and rank-
ing the values for APIs with the same name. The top 500
APIs with the highest centrality values are selected as the
sensitive API feature set. Based on the feature set that was
extracted, we leveraged the one-shot technique along with
role-based promoting to send the extracted APIs to an LLM
(GPT-3.5-turbo) for analysis. If the API could potentially
be used for malicious purposes, we retained it in the feature
set; otherwise, it was removed. Additionally, for the retained

APIs, we leveraged the language model to perform an analysis
of possible malicious behaviors. The analysis results were
saved in the format api_name: malicious_behavior, creating
a Ground_Truth dataset for further reference. Step 3: Model
Training. Using the feature set obtained in the second step, we
extract feature vectors and train an ML model for malicious
package detection. Step 4: The Explanation Output based
on LIME Algorithm. Based on the ML model trained in
Step 3, we integrated the LIME algorithm into the model. By
identifying the top 10 most influential non-zero features for
the model’s decision, we matched these feature names against
the Ground_Truth dataset. For each matched feature, all its
associated potential malicious behaviors were retrieved and
compiled to produce an explanation output, providing insights
into the reasoning behind the model’s detection decision.

4.1 API Call Graph
Generation Since social network graphs have been proven
effective in Android malware detection, and our experiments
in Section 3.2 further demonstrate that sensitive APIs in PyPI
malicious packages often exhibit significantly higher and
more anomalous centrality values in API call graphs com-
pared to those in benign software, we focus our analysis on
malicious packages when extracting API call graphs.

First, for each malicious package, we construct an AST. Us-
ing the relationships between nodes and edges in the AST, we
generate a corresponding API call graph for each package. In
the API call graph, each node represents an API, and the edges
capture the invocation relationships between APIs. Based on
these relationships, we calculate the centrality values for all
nodes (APIs).

Given the variety of centrality measures available, we se-
lected four of the most widely used centrality metrics to ensure
comprehensive analysis: Closeness centrality, Degree cen-
trality, Katz centrality, and Harmonic centrality. These
measures provide a framework for identifying APIs with
anomalous behaviors that may indicate malicious activity.

Closeness centrality. Closeness centrality is based on the
reciprocal of the sum of the shortest path distances from a
node to all other nodes, emphasizing the node’s efficiency in
spreading information or influence.

CC(v) =
N −1

∑u∈V,u̸=v d(v,u)

Where N is the total number of nodes in the graph, d(v,u)
represents the shortest path distance between node v and u,V
is the set of all nodes in the graph.

Degree centrality. Degree centrality evaluates a node’s
importance based on the number of direct connections (edges)
it has with other nodes.

CD(v) =
deg(v)
N −1

Malicious Packages API Call Graphs

STEP 1 : API Call Graphs Generation STEP 2 : Feature Set Extraction

…

API Call Graphs Suspicious APIs Sensitive APIs

STEP 3 : Model Training

Training SampleFeature VectorLIMETarget Packages

STEP 4 : Explanation Output Generation

Malicious
Packages
Benign

Packages

+
Explanation

AST Parsing Sorting Verifying

ExtractionTraining

Figure 1: MALGUARD architecture.

Where N is the total number of nodes in the graph, deg(v)
represents the degree of the node v (i.e., the number of edges
connected to node v) and N is the total number of nodes in
the graph.

Katz centrality. Katz centrality measures a node’s influ-
ence by considering both the immediate neighbors and the
neighbors further away, applying a weighting factor to penal-
ize more distant connections.

CK(v) = α ∑
u∈V

AvuCK(u)+β

Where α is the damping factor, typically a small value less
than 1, which controls the influence of distant nodes, Avu is
the entry in the adjacency matrix V (Avu = 1 if there is an
edge from node v to u, otherwise (Avu = 0), β is a constant
that can be adjusted to represent the baseline centrality of
each node.

Harmonic centrality. Harmonic centrality accounts for
disconnected nodes by summing the reciprocal of distances
rather than taking their total sum.

CH(v) = ∑
u∈V,u̸=v

1
d(v,u)

Where d(v,u) represents the shortest path distance between
node v and u,V is the set of all nodes in the graph.

We observed that, unlike Android malware [42,51], Python
malicious packages are often smaller in size [37], and attack-
ers tend to write malicious code directly in the global scope.
As a result, even though the attackers use certain APIs, there
are often no direct invocation relationships between them.
This leads to a centrality value of zero for these APIs, This
problem could result in a scenario where, although malicious
packages invoke certain APIs, these invocation relationships
are not accurately reflected in the centrality values. Conse-
quently, important patterns of API usage may be overlooked.

Table 7: The feature set dimension after pre-processing by
general-purpose LLM.

Centrality Closeness Degree Katz Harmonic

Total Dimensions 265 255 294 135

To address this issue, we adjust the calculation of centrality
values by adding a default value of 1 to all centrality scores.
This ensures no API’s centrality value can be zero, effectively
mitigating the problem and allowing us to capture the sig-
nificance of APIs even in the absence of direct invocation
relationships.

4.2 Sensitive API Extraction and Filter
After generating the API call graph and calculating node cen-
trality values for each malicious package, the next step is to
identify the sensitive API feature set. To achieve this, we
aggregate the centrality values of APIs with the same name
across all malicious packages. Specifically, we sum the cen-
trality values of each API and then divide the total by the
number of malicious packages to obtain an averaged central-
ity value for each API. This results in a comprehensive list of
APIs with their corresponding averaged centrality values. We
then rank the APIs based on their averaged centrality values
and select the top K (K = 200,300,400,500) as the sensitive
API feature set. Although ML models can achieve effective-
ness in malicious package detection comparable to that of
LLMs, they have an inherent limitation: their inability to ex-
plain malicious behaviors. To address the need for a reliable
dataset to explain malicious behaviors, we utilized an LLM
(GPT-3.5-turbo) to construct a ground truth dataset. Specif-
ically, the sensitive APIs extracted in Step 2 were analyzed
using prompt engineering.

To ensure the feature set included as many suspicious APIs

as possible while reducing the influence of irrelevant APIs,
we selected the top 500 APIs for analysis. Each API was
evaluated by the LLM to determine whether it could be used
for malicious purposes: If potentially malicious, the API was
retained in the feature set. Otherwise, it was removed. This
process resulted in a refined, accurate, and relatively compre-
hensive feature set of suspicious APIs. The specific feature
dimensions are summarized in Table 7.

In addition to fully leveraging the code understanding ca-
pabilities of the LLM, the filtered APIs were analyzed further.
We instructed the model to generate outputs in a JSON for-
mat, similar to the gray-highlighted section in Figure 1, where
each API was mapped to its potential malicious behaviors.
After manual verification and the removal of unreasonable or
inaccurate entries from the generated analysis, we finalized a
ground-truth dataset that links API names to their potential
malicious behaviors.

It is important to highlight that, unlike other approaches uti-
lizing LLMs for malicious package detection, which require
repeated invocations of the LLMs while our approach only
necessitates a single invocation to construct the feature set.
Additionally, the number of APIs that need to be analyzed is
limited to 500. This results in significant advantages in terms
of both time and economic costs.

4.3 Malicious Package Detection
To achieve efficient and precise detection of malicious pack-
ages, we utilized the feature set generated in Step 2 and ap-
plied methods such as regular expression matching to extract
relevant features from the dataset’s packages. For each API in
the sensitive API feature set, we computed its corresponding
centrality value within the context of a given package. This
centrality value was then used as the feature value, reflecting
the importance of the API within the package’s structure. The
extracted values were compiled into comprehensive feature
vectors, which were subsequently used to train ML models.

4.4 Explanation output based on LIME
Local Interpretable Model-agnostic Explanations (LIME).
LIME is a widely used algorithm designed to enhance the
explainability of ML models. It explains the predictions of
any black-box model by approximating the model’s behavior
locally around a specific instance [9]. We integrated the LIME
algorithm into our ML model to enhance its explainability by
identifying the top 10 non-zero features that had the most sig-
nificant impact on the model’s predictions. For each of these
features, we cross-referenced the API names with the ground
truth dataset generated in Step 2 to retrieve all potential mali-
cious behaviors associated with each API. Simultaneously, we
located the specific lines of code where these APIs appeared
within the analyzed package, allowing us to understand their
exact usage. To provide a clearer view of the API interactions,

LIME Explanation for package pandas-numpy-8.19.3:

In file pandas-numpy-8.19.3/reqinstaller/__init__.py line 6, the package holder use the sensitive api:
[requests.get],
in function/global global,
which may be used for:
['Performing unauthorized data extraction from a remote server',
'Conducting SQL injection attacks',
"Gather sensitive information from the server's response data"]

In file pandas-numpy-8.19.3/reqinstaller/__init__.py line 11, the package holder use the sensitive api:
[subprocess.call],
in function/global global,
which may be used for:
['Execute harmful system commands or shell scripts']

In file pandas-numpy-8.19.3/setup.py line 7, the package holder use the sensitive api:
[setup],
in function/global global,
which may be used for:
['Potential for unauthorized access to sensitive data',
'Possibility of injecting malicious code or backdoors during the setup']

In file pandas-numpy-8.19.3/setup.py line 15, the package holder use the sensitive api:
[find_packages],
in function/global global,
which may be used for:
['Search for and gain unauthorized access to sensitive packages.']

In file pandas-numpy-8.19.3/setup.py line 38, the package holder use the sensitive api:
[base64.b64decode],
in function/global global,
which may be used for:
['Decoding base64-encoded strings.']

In file pandas-numpy-8.19.3/setup.py line 38, the package holder use the sensitive api:
[exec],
in function/global global,
which may be used for:
['Arbitrary code execution',
'Injection attacks']

Figure 2: The explanation output result of malicious package
pandas-numpy-8.19.3.

we sorted the identified APIs based on the order in which they
appeared in the code, creating a sequential representation of
their calling order and relationships across different Python
script files in the package. Finally, we output all suspicious
APIs along with their respective potential malicious behaviors,
providing a comprehensive and interpretable result for further
investigation. The output results are shown in Figure 2.

Each explanation output includes the following details:
Sensitive API Name: The name of the sensitive API. File
Name and Code Line: The name of the file in which the sen-
sitive API is located, along with the specific line(s) of code
where it is used. Usage Context: Whether the sensitive API
is used in the global scope or within a specific function. Po-
tential Malicious Behaviors: A list of all possible malicious
behaviors associated with the sensitive API.

5 Evaluation

In this section, we evaluate MALGUARD from different per-
spectives. First, we compare the effectiveness of MALGUARD
with SOTA detection approaches (Section §5.1). Second, we
evaluate whether the feature set filtered by general-purpose
LLMs can really affect the effectiveness of our approach
(Section §5.2). Third, we evaluate if the explanation outputs
generated by MALGUARD can truly help researchers capture

the malicious intent of attackers (Section §5.3). Then we
measure what is the optimal value for the parameter top K in
selecting sensitive APIs to achieve the best effectiveness of
the model (Section §5.4). Besides, we evaluate the robustness
of MALGUARD against the adversarial attack (Section §5.5).
Finally, we show that MALGUARD can identify malicious
packages that exist in the wild (Section §5.6).
Datasets and Models. To better validate the effectiveness
of MALGUARD, we constructed a model training and testing
dataset. As shown in Table 1, we collected a dataset containing
9,664 malicious packages and 10,000 benign packages. The
benign packages dataset was the same dataset mentioned in
Section §2.1. The entire dataset was randomly divided into
training and testing sets in an 8:2 ratio, with the former used
for model training and the latter for testing.
Baselines. To evaluate the effectiveness of MALGUARD
against existing approaches, we selected six SOTA approaches
as our baselines for comparison. These six approaches are
VIRUSTOTAL [15], OSSGADGET [5], BANDIT4MAL [39],
EA4MP [37], CEREBRO [46] and GUARDDOG [16]. VIRUS-
TOTAL [15] provides an online detection platform where
packages can be uploaded directly for analysis. It automat-
ically detects whether the software package contains suspi-
cious files, IPs, URLs, etc. OSSGADGET [5] can identify
potential backdoors and malicious code within a package.
BANDIT4MAL [39] is an approach to finding common secu-
rity issues in Python code. It processes each file, builds an
AST from it, and runs appropriate plugins against the AST
nodes. EA4MP [37] is an integrated detection approach based
on deep code behavior sequences and metadata. Their ap-
proach used static analysis tools to extract CFGs and CGs to
generate code behavior sequences, which were subsequently
fine-tuned with the BERT model. CEREBRO is an approach by
extracts a code sequence that can describe the malicious be-
haviors of attackers, and then uses this sequence to fine-tune
the BERT model. GUARDDOG leverages Semgrep’s semantic
analysis capabilities and YARA’s pattern-matching features
to perform static code analysis and metadata scanning on
packages from PyPI, NPM, and Go.
Implementation. We implement MALGUARD in Python
using PyTorch [32]. Our experiments are performed on a
Linux workstation with an AMD RYZEN 7735HS CPU,
32GB RAM, and an NVIDIA V100 GPU with 32GB memory,
running Ubuntu 22.04 with CUDA 12.1. We implemented the
ML models using the scikit-learn library (sklearn) in Python.
Specifically, we utilized five widely used classifiers: NB, XG-
Boost, RF, SVM, and MLP.
Evaluation Metrics. We utilize three widely-used binary
classification metrics for evaluation: Precision, Recall, and F1
score. Precision is the ratio of correctly identified malicious
samples to all samples classified as malicious, representing
the model’s ability to avoid false positives. Recall measures
the proportion of correctly identified malicious samples out
of all actual malicious samples, reflecting the model’s ability

Closeness Degree

Harmonic Katz

Figure 3: The effectiveness of the Random Forest (RF) model
trained by top n APIs in four different centrality feature sets.

to detect true positives. F1 score is the harmonic mean of Pre-
cision and Recall, providing a balanced measure of a model’s
effectiveness. It is calculated as follows: 2× Recall×Precision

Recall+Precision .

5.1 Effectiveness Evaluation

Experimental Setup. To evaluate the effectiveness of MAL-
GUARD, we combined benign and malicious packages, then
randomly split the dataset into two parts: 80% was used
as the training set, while the remaining 20% served as the
test set. The same dataset was used to evaluate OSSGAD-
GET, BAND4MAL, EA4MP,CEREBRO and ourapproach MAL-
GUARD. Since VIRUSTOTAL provides an online detection
platform. Similarly, GUARDDOG relies on static analysis and
heuristic rules without requiring model training, so we only
use the test set to verify their effectiveness. The experimental
results are shown in Table 8.
Result. Table 8 shows the effectiveness of MALGUARD
compared to the five baseline approaches on the same dataset.
Comparing the data in the table, it is evident that MAL-
GUARD improves precision by 0.5% to 33.2% over the other
approaches, achieving the highest precision among all. Re-
garding recall, MALGUARD improved by 1.8% to 22.1%
compared to all other approaches. The experimental results
demonstrate that our approach achieves optimal effective-
ness in terms of precision, recall, and F1 scores. In contrast,
other approaches exhibit inherent limitations that affect their
effectiveness, making them less effective compared to MAL-
GUARD. First, Approaches like Bandit4Mal and OSSGadget
often misclassify benign behaviors such as network connec-
tions and file operations in normal packages as malicious.
This misclassification arises from their inability to distinguish

between malicious and benign behaviors effectively. Second,
Signature-based detection methods, such as VirusTotal, strug-
gle to keep pace with the diversity and constant evolution
of malicious code. The difficulty in maintaining consistent
fingerprints for new malicious code makes it challenging for
signature databases to detect the latest malicious packages.
Third, Although LLMs often demonstrate excellent effective-
ness in malicious package detection, as seen in approaches
like EA4MP and CEREBRO, they tend to be overly sensitive to
certain sensitive operations. This heightened sensitivity can
lead to false positives, where benign packages are incorrectly
flagged as malicious.
Case Study. To understand why certain benign packages
that also invoke sensitive APIs can be more effectively distin-
guished from malicious ones by our approach compared to
existing methods, we analyzed benign samples that were mis-
classified by other approaches but correctly identified by ours.
Since most existing methods function as black-box models, it
is difficult to determine the rationale behind their decisions.
In contrast, GUARDDOG provides a list of suspicious APIs
contained in each flagged package, which offers partial insight
into its classification process. Therefore, we selected benign
samples misclassified by GuardDog for further analysis.

Our analysis revealed that GUARDDOG tends to ex-
hibit strong sensitivity toward specific categories of APIs.
Once such APIs are invoked in a package, GUARDDOG
is more likely to classify it as malicious. For example, in
the case of GACF-1.0.1, the package invoked APIs such as
os.environ.copy(), subprocess, and os.makedirs(), which fall
under the category of system-level operations that interact
with the environment or the file system. These triggered a
false positive detection by GUARDDOG. In contrast, our ap-
proach not only considers the presence of sensitive API calls
but also incorporates their centrality values within the API
call graph as feature indicators. We found that, except for
the relatively high centrality of the subprocess API, the other
sensitive APIs in this benign package exhibited no significant
centrality anomalies. This suggests that the benign package
did not rely heavily on a small set of sensitive APIs, as re-
flected in their low centrality values. This result demonstrates
that incorporating API centrality can help reduce false posi-
tives and more accurately distinguish benign packages from
malicious ones, outperforming existing approaches.

5.2 Ablation Study
Experimental Setup. To validate the effectiveness of us-
ing LLMs for feature selection and analysis, we designed a
comparative experiment to assess the impact of two different
feature sets on the experimental results. For the initial feature
set, we selected the top 500 APIs ranked by centrality values
as sensitive APIs and used this feature set for feature extrac-
tion from the dataset. For the second feature set, we refined
the initial set by utilizing the GPT-3.5-turbo model for fur-

Table 8: Effectiveness comparison with the SOTA baselines.

Approach Precision (%) Recall (%) F1 score (%)

VIRUSTOTAL [15] 95.2 80.6 87.3
OSSGADGET [5] 74.8 85.0 79.6
BAND4MAL [39] 84.8 96.7 90.4

EA4MP [37] 99.1 95.4 97.2
CEREBRO [46] 98.6 85.7 91.7

GUARDDOG [16] 95.6 82.6 88.6

MALGUARD 99.6 98.4 99.0

ther filtering and analysis. To comprehensively evaluate the
classification effectiveness of the model on both benign and
malicious packages, we separately calculated the Precision,
Recall, and F1 score for benign and malicious samples.
Result. Through the analysis of APIs filtered out by the large
language model, we observed that APIs like print, range, and
int, despite being ranked within the top 500, are primarily
used for basic data processing or output operations. These
APIs are seldom, if at all, employed as vehicles for malicious
activities. The experimental results, shown in Table 9, reveal
that for the NB model, simply selecting the top 500 APIs as
the feature set causes the model to overly favor classifying
packages as either entirely benign or entirely malicious, ren-
dering it almost ineffective in practical applications. However,
the feature set refined using the LLM significantly improved
the NB model’s effectiveness. While its effectiveness still
lags behind that of other models, this is primarily due to the
inherent limitations of the NB model itself. The experimental
results show that the remaining four ML models performed
similarly across both feature sets. These findings support two
key conclusions: First, our approach of using API call graph
centrality for automated feature extraction is effective. This
indicates that centrality measures can successfully capture
relevant features for malicious package detection. Second,
leveraging a general large language model can effectively
help in filtering out irrelevant APIs from the feature set.

5.3 Explainability Evaluation

Explanation outputs verification dataset. To validate the
accuracy of the explanation outputs, we randomly selected
100 malicious packages and 100 benign packages from the
dataset for analysis. First, we employed prompt engineering to
query the GPT-3.5-turbo model, instructing it to generate ma-
licious behavior analyses in a specified format for the selected
packages. To mitigate the potential impact of hallucinations
in the LLM on the experimental results, we further conducted
manual verification of the model’s outputs. This process re-
sulted in the creation of an explanation output verification
dataset that contains 100 malicious packages.

To validate the accuracy of the model’s final explana-
tion outputs, we used the Explanation Outputs Verifica-

Table 9: Effectiveness of models trained by different centrality feature sets.

with Feature Filtering w/o Feature Filtering

Metrics (%) Closeness Harmonic Degree Katz Closeness Harmonic Degree Katz

RF

Precision 99.4 92.5 99.3 99.6 99.9 99.9 99.9 94.9

Recall 97.0 97.1 97.3 98.4 98.1 98.0 98.2 95.8

F-1 98.2 94.8 98.3 99.0 99.0 99.0 99.1 95.3

XGBoost

Precision 99.4 99.2 92.5 99.3 99.2 99.3 99.2 93.0

Recall 96.5 96.3 95.5 96.9 98.5 98.7 98.6 94.5

F-1 97.9 97.7 94.0 98.1 98.8 99.0 98.9 93.7

SVM

Precision 97.9 87.1 97.6 97.9 82.8 86.6 72.6 71.8

Recall 96.5 91.2 96.2 96.3 80.9 83.5 96.1 95.9

F-1 97.2 89.1 96.9 97.1 81.8 85.0 82.7 82.1

MLP

Precision 98.5 92.0 98.2 98.4 99.0 99.1 98.3 89.8

Recall 97.8 97.0 98.0 98.1 98.9 95.5 98.6 92.5

F-1 98.1 94.4 98.1 98.2 99.0 97.3 98.4 91.1

tion Dataset as a benchmark. Two evaluation criteria were
adopted: the number of sensitive APIs included in the out-
put and their precise localization. If an explanation output
contained at least 80% of the sensitive APIs and correctly
identified their locations, it was deemed accurate.

The experimental results, shown in Table 10, all four ML
models successfully identified the vast majority of malicious
packages and generated accurate explanation outputs. Specifi-
cally, for degree centrality, 96 malicious packages were de-
tected by at least three models, and 90 were identified by
all four models. Even for the feature set based on harmonic
centrality, which performed less effectively, there were 79
malicious packages detected by the four models.

To further assess whether the explanation output could help
researchers analyze malicious behaviors, we randomly invited
n=24 volunteers (each with at least two years of experience
in software engineering or software security) to rate the ex-
planation results. Ratings ranged from 1 to 5, with higher
scores indicating better quality. If a model failed to detect a
malicious package or did not generate any explanation output,
a score of 0 was assigned. The final scores were averaged and
shown in Figure 4.

The experimental results demonstrate that the explainability
content generated by our approach achieved an average score
of 3.5 or higher, indicating that the explanation outputs are
effective and useful for aiding in malicious behavior analysis.
False Positive Analysis. To investigate why the model mis-
classified certain benign samples as malicious, we conducted
a detailed analysis of three false positive cases identified by

Table 10: Effectiveness of different ML Models in Expla-
nation Outputs Verification Dataset (The Third Column
shows the number of malicious packages that every model can
detect and explain while the Fourth and Fifth Columns show
the number of malicious packages that can be detected and
accurately explained by more than 3 or 4 different models.).

Centrality Model Total detected r>=3 r=4

Closeness

XGBoost 96

95 93

RF 95

SVM 94

MLP 98

Degree

XGBoost 97

96 90

RF 96

SVM 91

MLP 97

Katz

XGBoost 95

93 86

RF 93

SVM 88

MLP 96

Harmonic

XGBoost 95

92 79

RF 93

SVM 82

MLP 95

Closeness Centrality

Katz Centrality Harmonic Centrality

Degree Centrality

Figure 4: Box plot analysis of the average score of 100 mali-
cious packages’ explanation output.

the Random Forest model (e.g., eazure-0.1.1, gitlab-clone-
0.1.1, py-sourcemap-.1.14) and examined the corresponding
explainability outputs. We found that these benign packages
all invoked multiple high-ranking sensitive APIs from the
feature set. For example, py-sourcemap-0.1.14 performed file
operations (e.g., read, open), issued network requests (e.g.,
urlopen), and executed installation-related commands (e.g.,
install.run). These APIs also showed significantly higher cen-
trality values within the package’s API call graph. These find-
ings suggest that the frequent use of diverse high centrality
sensitive APIs likely led to the model’s misclassification.

5.4 Hyperparameter Sensitivity Analysis
Experiment Setup. To systematically examine the im-
pact of varying the top K parameter on the final model’s
effectiveness, we performed experiments with different (K
= 200,300,400,500). The lower bound of K = 200 was es-
tablished based on the dimensionality of a manually curated
feature set, which consisted of 132 features, ensuring that the
automatically extracted feature set would not be less informa-
tive. The upper bound of K= 500 was derived from manual
analysis, which demonstrated that APIs ranked beyond this
threshold seldom exhibited suspicious or malicious behavior.
We selected the Random Forest (RF) model that demonstrated
the best effectiveness in our previous experiments to evaluate
the effect of these parameter choices on model effectiveness.
This approach facilitates a thorough evaluation of how the se-
lection of K influences both the effectiveness and reliability of
the detection system, thereby providing insights into optimal
parameter configuration for malicious package detection.

Result. The experimental results, illustrated in Figure 2,
show that as K increases, the model’s effectiveness consis-
tently improves across feature sets derived using four differ-
ent centrality metrics. For instance, the F1 scores increase
by 2%–7% when K is raised from 200 to 500, indicating that
higher K values include more suspicious APIs in the feature
set. These findings suggest that setting K= 500 allows the fea-
ture set to capture the most comprehensive set of suspicious
APIs. To ensure optimal model effectiveness, all subsequent
experiments adopt K= 500 as the default parameter setting.

5.5 Robustness against Adversarial Attack

Experiment Set. To evaluate the robustness of MALGUARD
against adversarial attacks, we selected two representative
and widely adopted categories of attack strategies [48]. Cat-
egory 1: Feature Space Attacks. This category targets the
feature vectors that are used by our detection model. Two
distinct attack methods were applied: The first method intro-
duces random noise into the feature vectors, following the
randomization-based attack [43]. The second method trans-
forms all non-zero feature values in both the training and test
sets to 1, instead of using their original centrality scores of
API nodes. Category 2: Source Code Level Adversarial
Attack. Several adversarial attack strategies against software
packages have been proposed in prior works. For example,
Kreuk [26] injects adversarial byte sequences into binary
files; IPR [25] obfuscates code by inserting randomized, se-
mantically ineffective instructions, and DISP [31] introduces
code randomization using equivalent instruction replacement.
However, these techniques target executable binaries (e.g.,
.exe, .apk), whereas most malicious PyPI packages are dis-
tributed as source archives (e.g., .tar.gz). Moreover, to ensure
the effectiveness of static analysis tools used to construct API
call graphs, the injected content must preserve source code
validity. Therefore, we designed a source code level attack
inspired by IPR [25], adapted to Python packages. Specifi-
cally, for each malicious package, we randomly selected α

benign packages (1 <= α <= 3). From these, we randomly
chose β Python source code files to inject. After analyzing the
dataset of malicious packages, we found that each package
contains an average of 4.18 .py files. To avoid injecting an
excessive amount of dead code that could distort the package
structure, we rounded the value β up to a maximum of 5. To
maintain randomness in the poisoning process, we allowed
β to vary within the range of 1 to 5. These benign files were
then injected into the malicious package without modifying
any original code. Then we reconstructed the API call graph,
re-extracted the feature set and feature vectors based on close-
ness centrality, and retrained the detection models.
Result. Figure 5 presents the F1 score of the four ML mod-
els used in our approach (RF, XGBoost, SVM, and MLP)
when subjected to adversarial attacks. Under the first cate-

Figure 5: Model robustness against adversarial attacks.

gory of attacks, we observed that the strategy of replacing
all non-zero feature values with 1 led to only a slight drop
in effectiveness. This is expected, as the transformation does
not alter the underlying API invocation patterns of the mali-
cious packages. In contrast, the randomization-based strategy
introduces noise to the feature vectors, effectively disrupting
the API call patterns. As a result, the F1 scores dropped more
substantially. Nevertheless, even under this more aggressive
attack, the worst-performing model (XGBoost) still achieved
an F1 score of 75.7%, while the remaining models maintained
F1 scores above 85%. Under the second category of attacks,
our approach also experienced a effectiveness decline. How-
ever, even for the worst-performing model (MLP), the F1
scores remained as high as 91.1%. Even when we increased
the parameter β from 1 to 10, our approach was still able
to maintain an F1 score above 84%. Additionally, the effec-
tiveness gap among the four models under this IPR-inspired
source-level attack was relatively small.

To understand this result, we analyzed the post-attack fea-
ture sets and found that although the injected benign code
(i.e., dead code) somewhat reduced the centrality values of
certain sensitive APIs, these added components did not form
direct invocation relationships with the sensitive APIs. As a
result, within the local subgraphs containing sensitive APIs,
their centrality remained significantly higher than that of unre-
lated APIs. These findings demonstrate that although our ap-
proach suffers some degradation under adversarial conditions,
it maintains effectiveness at an acceptable level, highlighting
its robustness against such attacks.

5.6 Practicality

Wild truth. To verify if MALGUARD can identify mali-
cious packages that exist in the wild, we crawled all packages
uploaded to PyPI between December 21, 2024, and January
28, 2025, from the official website [3]. In total, we collected
64,348 packages for real-world validation. Two authors sepa-
rately review the reported malicious packages. All suspicious
packages (including samples that did not reach a consensus)

would be forwarded to a security expert from a prominent IT
enterprise with at least five years of experience in software
supply security to conduct a secondary review.

In total, MALGUARD discovered 144 suspicious packages.
After manual review, 113 out of them were confirmed mali-
cious. We reported these packages to the PyPI official. As of
January 21, 2025, 109 of them have been removed.
False Positives. Upon analyzing 31 packages that were in-
correctly flagged as malicious, we discovered that 25 of them
were user-uploaded test demos. Although these demo pack-
ages utilized numerous suspicious APIs, such as request.get
and subprocess.run, they did not engage in any malicious be-
havior. The remaining 6 packages were identified as prank
packages, such as the "crazy-thursday" package, which cre-
ates local processes to display "Crazy Thursday" messages
to users but does not perform any harmful actions. We have
reported these prank packages to the PyPI official too.

6 Discussion

Code Obfuscation. Code obfuscation is a common tech-
nique used to evade existing detection approaches. Currently,
most approaches primarily analyze software packages based
on their source code files. Some attackers circumvent de-
tection by packaging their code into binary executable files.
Detecting such packages requires software security profes-
sionals to have reverse engineering skills and to continuously
monitor the resource usage of the software package during
execution. Fortunately, code obfuscation also requires some
technical expertise from the attackers. Currently, the majority
of malicious software packages mainly obfuscate the parame-
ter values of functions. This means that MALGUARD can still
accurately detect them. However, how we deobfuscate more
complex forms of code obfuscation remains a challenge that
we need to address.
Cross Platforms Detection. Although existing approaches
for detecting malicious packages demonstrate strong effec-
tiveness, most of these methods are tailored to one or two
specific platforms. In the broader context of the open-source
software ecosystem, each programming language has its own
maintained open-source community. This implies that for dif-
ferent open-source communities, maintainers need to employ
distinct analysis methods and train separate detection models.
Such a requirement undoubtedly increases the complexity
of maintaining the stability of these communities. Zhang et
al. [46] proposed a dual-platform (NPM&PyPI) detection
tool based on the BERT model and code behavior sequences.
Their experiments demonstrated that although API names
vary across platforms, malicious actors must invoke APIs with
specific functionalities. Given this, the intrinsic relationships
among these APIs may potentially be leveraged to develop
cross-platform detection approaches for malicious packages.

7 Related Work

Malicious Package Detection. Detecting malicious soft-
ware packages within open-source software registries is a
complex challenge. Liang et al. [27] introduced PPD, a third-
party malware identification framework employing anomaly
detection. This approach forms a comprehensive code pack-
age by importing required packages, uses AST (Abstract Syn-
tax Tree) and RegExp (Regular Expressions) to extract code
features (e.g., IP addresses, dangerous functions), and incor-
porates the Levenshtein distance of package names into the
feature set. It then applies anomaly detection algorithms to
identify malicious packages. Given that developers often host
open-source code on platforms like GitHub, inconsistencies
between the code released on registries such as PyPI and
the corresponding GitHub repositories may signal malicious
injection. To address this issue, Vu et al. [40] proposed LAST-
PYMILE, a framework designed to identify disparities be-
tween software package construction artifacts and their source
repositories. This approach enhances monitoring of registry
security, helping mitigate risks. Zhang et al. [46] proposed
CEREBRO, which extracts code behavior sequences based on
abstract syntax trees. By identifying available APIs in the
AST, they construct a sequence describing the attacker’s ma-
licious behavior and use this sequence to fine-tune a BERT
model. However, while Zhang’s method leverages code be-
havior sequences to enhance model understanding of attack
patterns, it remains limited by the reliance on manual fea-
ture recognition. Liang et al. [28] introduced MPHUNTER,
which identifies malicious packages by extracting code behav-
ior sequences, converting them into vectors, and employing
clustering to detect anomalies. However, MPHUNTER is con-
strained to analyzing only the ‘setup.py‘ script in packages.
As noted by Guo et al. [23], attackers often distribute mali-
cious code across multiple scripts, complicating detection and
circumventing such approaches.
Package Registry Security. There are numerous reposito-
ries exploited as platforms for distributing malicious code
and software libraries. GURADDOG [16] is an open-source
command-line tool (CLI) developed by Datadog, designed to
identify malicious packages in PyPI, npm, and Go through
static code analysis and metadata scanning. It combines the
semantic analysis capabilities of Semgrep with the pattern-
matching power of YARA to detect suspicious behaviors.
ANOMALICIOUS [22] addresses this issue by leveraging com-
mit logs and repository metadata to automatically identify
anomalies and potentially malicious commits. Attackers often
misuse GitHub’s fork functionality to store and distribute mal-
ware [22]. To counter this threat, Zhang et al. [47] proposed
an enhanced deep neural network (DNN) [7, 8] for analyz-
ing the code content of GitHub repositories. Their approach
employed a heterogeneous information network (HIN) to
model neighborhood relationships, thereby improving recog-
nition accuracy. Malicious actors frequently embed harmful

shell commands within Python scripts to achieve illicit ob-
jectives. Traditional static analysis methods often struggle to
detect such sophisticated attacks. To address this gap, Zhou
et al. [49] introduced PYCOMM, ML model specifically de-
signed to detect malicious commands in Python scripts. PY-
COMM evaluates multidimensional features, simultaneously
analyzing 12 statistical characteristics of Python source code
and string sequences. In addition, Fang et al. [20] employed
ML techniques to identify Python backdoors. Their method
represented text using statistical features derived from obfus-
cation and opcode sequence characteristics during compila-
tion. By matching suspicious modules and functions within
the code, their approach effectively detected embedded back-
doors.

8 Conclusion

In this paper, we demonstrate that with a sufficiently com-
prehensive feature set, ML models can achieve effectiveness
comparable to that of LLMs. We also proposed a novel ap-
proach MALGUARD, leveraging graph centrality to extract
the sensitive APIs automatically, eliminating reliance on man-
ually predefined feature sets. Moreover, we employ GPT-3.5-
turbo to refine and analyze the feature set, and by integrat-
ing the LIME algorithm, we achieved explainable outputs
for malicious package detection, enhancing both explainabil-
ity and effectiveness. We evaluate MALGUARD against the
state-of-the-art approaches on a newly-constructed dataset.
MALGUARD performs better on all metrics. Moreover, com-
pared to existing works, our approach supports much faster
iteration. The computation of centrality values for all mali-
cious packages can be completed within a few hours, while
feature extraction and model training require only a few min-
utes. This efficiency enables our approach can be updated on
a daily basis using newly emerging packages, ensuring timely
adaptation to evolving threats. We also applied MALGUARD
to real-world detection and found 113 malicious packages
by detecting 64,348 newly uploaded PyPI packages, 109 of
which have been removed by PyPI officials. This indicates
that MALGUARD is a practical approach that can be adopted
by the Python community to detect malicious packages.

Acknowledgments

We thank the reviewers for their valuable comments. This
work was supported in part by the National Natural Science
Foundation of China (Grant No. 62402342), the Jiangsu “333”
Project, Postgraduate Research & Practice Innovation Pro-
gram of Jiangsu Province (KYCX24_3747), and Shanghai
Sailing Program (No. 24YF2749500).

Ethics Considerations

Throughout the study, we ensured that no personally
identifiable information (PII), sensitive user data was in-
volved at any stage of data collection, analysis, or valida-
tion. All datasets used for training and testing, including be-
nign and malicious packages, were obtained from publicly
available repositories or previous peer-reviewed studies (e.g.,
[20, 22, 23, 27, 28, 46]).

To ensure ethical integrity, we followed a transparent and
responsible disclosure procedure for all identified malicious
packages. Specifically, when our tool, MALGUARD, detected
previously unknown malicious packages among newly up-
loaded PyPI packages, we reported these findings to the PyPI
security team prior to any public disclosure. Out of 113 pack-
ages flagged as malicious, 109 were subsequently reviewed
and removed by PyPI, indicating the practical value and re-
sponsible execution of our methodology.

Open Science

This work aligns with the principles of Open Science and aims
to facilitate transparency, reproducibility, and community col-
laboration. All resources are available via our project repos-
itory at: https://doi.org/10.5281/zenodo.15545824.
We provide full documentation and guidelines to replicate our
experiments.

References

[1] 10th annual state of the software supply chain, 2024.
https://www.sonatype.com/state-of-the-sof
tware-supply-chain/2024/scale.

[2] Pypi index, 2024. https://pypi.org/.

[3] Pypi simple, 2024. https://pypi.org/simple/.

[4] Tiobe index, 2024. https://www.tiobe.com/tiob
e-index/.

[5] Bertus. Oss gadget: Collection of tools for analyzing
open source packages., 2020. https://github.com
/microsoft/OSSGadget.

[6] Sicong Cao, Biao He, Xiaobing Sun, Yu Ouyang, Chao
Zhang, Xiaoxue Wu, Ting Su, Lili Bo, Bin Li, Chuan-
lei Ma, Jiajia Li, and Tao Wei. Oddfuzz: Discovering
java deserialization vulnerabilities via structure-aware
directed greybox fuzzing. In Proceedings of the 44th
IEEE Symposium on Security and Privacy (SP), pages
2726–2743. IEEE, 2023.

[7] Sicong Cao, Xiaobing Sun, Lili Bo, Ying Wei, and Bin
Li. BGNN4VD: Constructing bidirectional graph neural-
network for vulnerability detection. Inf. Softw. Technol.,
136:106576, 2021.

[8] Sicong Cao, Xiaobing Sun, Lili Bo, Rongxin Wu, Bin
Li, and Chuanqi Tao. MVD: memory-related vulner-
ability detection based on flow-sensitive graph neural
networks. In Proceedings of the 44th IEEE/ACM Inter-
national Conference on Software Engineering (ICSE),
pages 1456–1468. ACM, 2022.

[9] Sicong Cao, Xiaobing Sun, Ratnadira Widyasari, David
Lo, Xiaoxue Wu, Lili Bo, Jiale Zhang, Bin Li, Wei Liu,
Di Wu, and Yixin Chen. A systematic literature re-
view on explainability for machine/deep learning-based
software engineering research. arXiv preprint arXiv:
2401.14617, 2024.

[10] Sicong Cao, Xiaobing Sun, Xiaoxue Wu, David Lo, Lili
Bo, Bin Li, and Wei Liu. Coca: Improving and explain-
ing graph neural network-based vulnerability detection
systems. In Proceedings of the 46th IEEE/ACM Inter-
national Conference on Software Engineering (ICSE),
pages 155:1–155:13. ACM, 2024.

[11] Tianqi Chen and Carlos Guestrin. Xgboost: A scal-
able tree boosting system. In Balaji Krishnapuram,
Mohak Shah, Alexander J. Smola, Charu C. Aggarwal,
Dou Shen, and Rajeev Rastogi, editors, Proceedings of
the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, San Francisco,
CA, USA, August 13-17, 2016, pages 785–794. ACM,
2016.

[12] Alibaba company. Pypi mirror of alibaba company, 2024.
https://mirrors.aliyun.com/pypi/simple/.

[13] Huawei company. Pypi mirror of huawei company, 2024.
https://mirrors.huaweicloud.com/repository
/pypi/simple/.

[14] Tencent company. Pypi mirror of tencent company, 2024.
https://mirrors.cloud.tencent.com/pypi/sim
ple.

[15] VirusTOTAL company. Analyse suspicious files, do-
mains, ips and urls to detect malware and other breaches,
automatically share them with the security community,
2024. https://www.virustotal.com/gui/home/up
load.

[16] DataDog. Guarddog, 2024. https://github.com/D
ataDog/guarddog.

[17] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. BERT: pre-training of deep bidirec-
tional transformers for language understanding. In Jill

https://doi.org/10.5281/zenodo.15545824
https://www.sonatype.com/state-of-the-software-supply-chain/2024/scale
https://www.sonatype.com/state-of-the-software-supply-chain/2024/scale
https://pypi.org/
https://pypi.org/simple/
https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/
https://github.com/microsoft/OSSGadget
https://github.com/microsoft/OSSGadget
https://mirrors.aliyun.com/pypi/simple/
https://mirrors.huaweicloud.com/repository/pypi/simple/
https://mirrors.huaweicloud.com/repository/pypi/simple/
https://mirrors.cloud.tencent.com/pypi/simple
https://mirrors.cloud.tencent.com/pypi/simple
https://www.virustotal.com/gui/home/upload
https://www.virustotal.com/gui/home/upload
https://github.com/DataDog/guarddog
https://github.com/DataDog/guarddog

Burstein, Christy Doran, and Thamar Solorio, editors,
Proceedings of the 2019 Conference of the North Amer-
ican Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, NAACL-HLT
2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1
(Long and Short Papers), pages 4171–4186. Association
for Computational Linguistics, 2019.

[18] douban. Pypi mirror of douban company, 2024. http:
//pypi.doubanio.com/simple/.

[19] Ruian Duan, Omar Alrawi, Ranjita Pai Kasturi, Ryan El-
der, Brendan Saltaformaggio, and Wenke Lee. Towards
measuring supply chain attacks on package managers
for interpreted languages. In Proceedings of the 28th
Annual Network and Distributed System Security Sym-
posium (NDSS). The Internet Society, 2021.

[20] Yong Fang, Mingyu Xie, and Cheng Huang. PBDT:
python backdoor detection model based on combined
features. Secur. Commun. Networks, 2021:9923234:1–
9923234:13, 2021.

[21] Linton C Freeman et al. Centrality in social networks:
Conceptual clarification. Social network: critical con-
cepts in sociology. Londres: Routledge, 1:238–263,
2002.

[22] Danielle Gonzalez, Thomas Zimmermann, Patrice Gode-
froid, and Max Schaefer. Anomalicious: Automated de-
tection of anomalous and potentially malicious commits
on github. In 43rd IEEE/ACM International Confer-
ence on Software Engineering: Software Engineering in
Practice, ICSE (SEIP) 2021, Madrid, Spain, May 25-28,
2021, pages 258–267. IEEE, 2021.

[23] Wenbo Guo, Zhengzi Xu, Chengwei Liu, Cheng Huang,
Yong Fang, and Yang Liu. An empirical study of mali-
cious code in pypi ecosystem. In Proceedings of the 38th
IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE), pages 166–177. IEEE, 2023.

[24] Leo Katz. A new status index derived from sociometric
analysis. Psychometrika, 18(1):39–43, 1953.

[25] Hyungjoon Koo and Michalis Polychronakis. Juggling
the gadgets: Binary-level code randomization using in-
struction displacement. In Proceedings of the 11th ACM
on Asia Conference on Computer and Communications
Security, ASIA CCS ’16, page 23–34, New York, NY,
USA, 2016. Association for Computing Machinery.

[26] Felix Kreuk, Assi Barak, Shir Aviv-Reuven, Moran
Baruch, Benny Pinkas, and Joseph Keshet. Adversar-
ial examples on discrete sequences for beating whole-
binary malware detection. CoRR, abs/1802.04528, 2018.

[27] Genpei Liang, Xiangyu Zhou, Qingyu Wang, Yutong
Du, and Cheng Huang. Malicious packages lurking
in user-friendly python package index. In 20th IEEE
International Conference on Trust, Security and Privacy
in Computing and Communications, TrustCom 2021,
Shenyang, China, October 20-22, 2021, pages 606–613.
IEEE, 2021.

[28] Wentao Liang, Xiang Ling, Jingzheng Wu, Tianyue Luo,
and Yanjun Wu. A needle is an outlier in a haystack:
Hunting malicious pypi packages with code clustering.
In 38th IEEE/ACM International Conference on Auto-
mated Software Engineering, ASE 2023, Luxembourg,
September 11-15, 2023, pages 307–318. IEEE, 2023.

[29] Massimo Marchiori and Vito Latora. Harmony in the
small-world. Physica A: Statistical Mechanics and its
Applications, 285(3-4):539–546, 2000.

[30] OpenAI. Chatgpt., 2024. https://chatgpt.com/.

[31] Vasilis Pappas, Michalis Polychronakis, and Angelos D.
Keromytis. Smashing the gadgets: Hindering return-
oriented programming using in-place code randomiza-
tion. In IEEE Symposium on Security and Privacy, SP
2012, 21-23 May 2012, San Francisco, California, USA,
pages 601–615. IEEE Computer Society, 2012.

[32] Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban
Desmaison, Andreas Köpf, Edward Z. Yang, Zachary
DeVito, Martin Raison, Alykhan Tejani, Sasank Chil-
amkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. Pytorch: An imperative style, high-
performance deep learning library. In Proceedings of
the 33rd Annual Conference on Neural Information Pro-
cessing Systems (NeurIPS), pages 8024–8035, 2019.

[33] Qi’anxin. 2023 china software supply chain security
analysis report, 2023. https://www.qianxin.com/
threat/reportdetail?report_id=297.

[34] Qi’anxin. Pypi massive forged packet name attack, 2024.
https://mp.weixin.qq.com/s/VIThE0I5BkQBW6h
IOubnkQ.

[35] Adriana Sejfia and Max Schäfer. Practical automated de-
tection of malicious npm packages. In 44th IEEE/ACM
44th International Conference on Software Engineer-
ing, ICSE 2022, Pittsburgh, PA, USA, May 25-27, 2022,
pages 1681–1692. ACM, 2022.

[36] Sonatype. Russia-linked ’lumma’ crypto stealer now
targets python devs, 2024. https://www.sonatype.c
om/blog/crytic-compilers-typosquats-known
-crypto-library-drops-windows-trojan.

http://pypi.doubanio.com/simple/
http://pypi.doubanio.com/simple/
https://chatgpt.com/
https://www.qianxin.com/threat/reportdetail?report_id=297
https://www.qianxin.com/threat/reportdetail?report_id=297
https://mp.weixin.qq.com/s/VIThE0I5BkQBW6hIOubnkQ
https://mp.weixin.qq.com/s/VIThE0I5BkQBW6hIOubnkQ
https://www.sonatype.com/blog/crytic-compilers-typosquats-known-crypto-library-drops-windows-trojan
https://www.sonatype.com/blog/crytic-compilers-typosquats-known-crypto-library-drops-windows-trojan
https://www.sonatype.com/blog/crytic-compilers-typosquats-known-crypto-library-drops-windows-trojan

[37] Xiaobing Sun, Xingan Gao, Sicong Cao, Lili Bo, Xi-
aoxue Wu, and Kaifeng Huang. 1+1>2: Integrating
deep code behaviors with metadata features for mali-
cious pypi package detection. In Proceedings of the
39th IEEE/ACM International Conference on Automated
Software Engineering (ASE), pages 1159–1170. ACM,
2024.

[38] Tsinghua university. Pypi mirror of tsinghua university,
2024. https://pypi.tuna.tsinghua.edu.cn/simp
le/.

[39] D.-L. Vu. A fork of bandit tool with patterns to identify-
ing malicious python code., 2020. https://github.c
om/lyvd/bandit4mal.

[40] Duc Ly Vu, Fabio Massacci, Ivan Pashchenko, Henrik
Plate, and Antonino Sabetta. Lastpymile: identifying the
discrepancy between sources and packages. In Diomidis
Spinellis, Georgios Gousios, Marsha Chechik, and Mas-
similiano Di Penta, editors, ESEC/FSE ’21: 29th ACM
Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineer-
ing, Athens, Greece, August 23-28, 2021, pages 780–792.
ACM, 2021.

[41] Bozhi Wu, Sen Chen, Cuiyun Gao, Lingling Fan, Yang
Liu, Weiping Wen, and Michael R. Lyu. Why an android
app is classified as malware: Toward malware classifica-
tion interpretation. ACM Trans. Softw. Eng. Methodol.,
30(2):21:1–21:29, 2021.

[42] Yueming Wu, Xiaodi Li, Deqing Zou, Wei Yang, Xin
Zhang, and Hai Jin. Malscan: Fast market-wide mobile
malware scanning by social-network centrality analy-
sis. In 34th IEEE/ACM International Conference on
Automated Software Engineering, ASE 2019, San Diego,
CA, USA, November 11-15, 2019, pages 139–150. IEEE,
2019.

[43] Cihang Xie, Jianyu Wang, Zhishuai Zhang, Zhou Ren,
and Alan Yuille. Mitigating adversarial effects through
randomization. arXiv preprint arXiv:1711.01991, 2017.

[44] Zeliang Yu, Ming Wen, Xiaochen Guo, and Hai Jin.
Maltracker: A fine-grained NPM malware tracker copi-
loted by llm-enhanced dataset. In Maria Christakis and
Michael Pradel, editors, Proceedings of the 33rd ACM
SIGSOFT International Symposium on Software Testing
and Analysis, ISSTA 2024, Vienna, Austria, September
16-20, 2024, pages 1759–1771. ACM, 2024.

[45] Nusrat Zahan, Philipp Burckhardt, Mikola Lysenko, Fer-
oss Aboukhadijeh, and Laurie Williams. Leveraging
large language models to detect npm malicious pack-
ages. In Proceedings of the 47th IEEE/ACM Inter-
national Conference on Software Engineering (ICSE),
pages 683–683. IEEE, 2025.

[46] Junnan Zhang, Kaifeng Huang, Yiheng Huang, Bihuan
Chen, Ruisi Wang, Chong Wang, and Xin Peng. Killing
two birds with one stone: Malicious package detection
in npm and pypi using a single model of malicious be-
havior sequence. ACM Trans. Softw. Eng. Methodol.,
34(4):104:1–104:28, 2025.

[47] Yiming Zhang, Yujie Fan, Shifu Hou, Yanfang Ye,
Xusheng Xiao, Pan Li, Chuan Shi, Liang Zhao, and
Shouhuai Xu. Cyber-guided deep neural network for
malicious repository detection in github. In Enhong
Chen and Grigoris Antoniou, editors, 2020 IEEE Inter-
national Conference on Knowledge Graph, ICKG 2020,
Online, August 9-11, 2020, pages 458–465. IEEE, 2020.

[48] Yinyuan Zhang, Cuiying Gao, Yueming Wu, Shihan
Dou, Cong Wu, Ying Zhang, Wei Yuan, and Yang Liu.
Fighting fire with fire: Continuous attack for adversarial
android malware detection.

[49] Anmin Zhou, Tianyi Huang, Cheng Huang, Dunhan Li,
and Chuangchuang Song. Pycomm: Malicious com-
mands detection model for python scripts. J. Intell.
Fuzzy Syst., 42(3):2261–2273, 2022.

[50] Xin Zhou, Sicong Cao, Xiaobing Sun, and David Lo.
Large language model for vulnerability detection and
repair: Literature review and the road ahead. ACM Trans.
Softw. Eng. Methodol., 34(5):145:1–145:31, 2025.

[51] Deqing Zou, Yueming Wu, Siru Yang, Anki Chauhan,
Wei Yang, Jiangying Zhong, Shihan Dou, and Hai Jin.
Intdroid: Android malware detection based on API in-
timacy analysis. ACM Trans. Softw. Eng. Methodol.,
30(3):39:1–39:32, 2021.

Appendix

A LLM Prompts for Malicious Analysis

Here are three prompts that we used to query LLM for mali-
cious analysis. The first one is used to analyze whether the
package that we send is malicious, illustrated in System Role
Prompt of Malicious Packages Detection. The second one
is used to analyze weather the API we send can be used for
malicious purposes, if so, analyze the malicious purposes,
illustrated in System Role Prompt of Sensitive API Analysis.
The second one is used to analyze which APIs the malicious
package we send has used, and describe the malicious behav-
ior it contains, illustrated in System Role Prompt of Malicious
Packages Analysis.

https://pypi.tuna.tsinghua.edu.cn/simple/
https://pypi.tuna.tsinghua.edu.cn/simple/
https://github.com/lyvd/bandit4mal
https://github.com/lyvd/bandit4mal

System Role Prompt of Malicious Packages Detection

Task:
You are a cybersecurity expert. Your task is to analyze
a given Python code snippet and determine whether
it contains malicious behavior.
Guidelines:
-Examine the code for patterns commonly used in
malware.
-Consider whether the code could be harmful when
executed, even if it appears simple.
-Be objective. If malicious behavior is suspected,
clearly explain why.
-Output must be in valid JSON format.
Code:
<INSERT CODE HERE>
JSON Response:

{
"is_malicious": true or false,
"reason": “The malicious behaviors the

code cotained.",
"confidence": 0-1,
"indicators": ["", ""]

}

System Role Prompt of Sensitive API Analysis

Task:
You are a security API auditor. Your task is to deter-
mine whether a given Python API can potentially be
used for malicious purposes.
Guidelines:
-Consider common attack techniques such as com-
mand execution, code obfuscation, data exfiltration,
privilege escalation, etc.
-If the API is not typically used in a malicious context,
return a neutral evaluation.
-Output must follow the required JSON format.
Code:
<INSERT CODE HERE>
JSON Response:

{
"api_name": “The name of the API",
"is_potentially_malicious": true,
"malicious_usage": “Malicious purposes."

}

System Role Prompt of Malicious Packages Analysis

Task:
You are a behavioral malware analyst. Your task is to
extract and classify all malicious behaviors present in
a given Python code snippet.
Guidelines:
-Identify and label all suspicious or clearly malicious
behaviors in the code.
-For each behavior, provide a category, a short descrip-
tion, and a relevant code snippet.
-If no malicious behaviors are found, return an empty
array.
-Output must be in valid JSON format.
Code:
<INSERT CODE HERE>
JSON Response:

{
"malicious_behaviors": [
{
"type": “Malicious type n",
"description": “Malicious behavior

description.",
"code_snippet": “The code that contain

malicious APIs."
},
...]

}

	Introduction
	Empirical Study
	Dataset
	Baseline
	Study 1: Effectiveness Comparison of ML Models and LLM-based Approaches
	Study 2: Robustness Against PyPI Malicious Packages

	API Call Graph Based Centrality Analysis
	API Call Graph and Centrality Analysis
	Difference between Malicious and Benign Packages

	MalGuard: Graph Centrality and ML-Based Malicious Package Detection
	API Call Graph
	Sensitive API Extraction and Filter
	Malicious Package Detection
	Explanation output based on LIME

	Evaluation
	Effectiveness Evaluation
	Ablation Study
	Explainability Evaluation
	Hyperparameter Sensitivity Analysis
	Robustness against Adversarial Attack
	Practicality

	Discussion
	Related Work
	Conclusion
	LLM Prompts for Malicious Analysis

