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Memory-related vulnerabilities can result in performance degradation or even program crashes, constituting

severe threats to the security of modern software. Despite the promising results of deep learning (DL)-based

vulnerability detectors, there exist three main limitations: (1) rich contextual program semantics related to

vulnerabilities have not yet been fully modeled; (2) multi-granularity vulnerability features in hierarchical

code structure are still hard to be captured; and (3) heterogeneous flow information is not well utilized. To

address these limitations, in this article, we propose a novel DL-based approach, called MVD+, to detect

memory-related vulnerabilities at the statement-level. Specifically, it conducts both intraprocedural and

interprocedural analysis to model vulnerability features, and adopts a hierarchical representation learning

strategy, which performs syntax-aware neural embedding within statements and captures structured

context information across statements based on a novel Flow-Sensitive Graph Neural Networks, to learn

both syntactic and semantic features of vulnerable code. To demonstrate the performance, we conducted

extensive experiments against eight state-of-the-art DL-based approaches as well as five well-known static

analyzers on our constructed dataset with 6,879 vulnerabilities in 12 popular C/C++ applications. The

experimental results confirmed that MVD+ can significantly outperform current state-of-the-art baselines

and make a great trade-off between effectiveness and efficiency.
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1 INTRODUCTION

Memory-related vulnerabilities, such as buffer overflows, use-after-free, and memory leaks,
and so on, are prevalent in software systems written in programming languages with manual
memory management mechanism like C/C++ [79]. Such security-critical weaknesses can result in
performance degradation or even program crashes, severely threatening the security of modern
software [17, 87]. A recent study found that around 40% of vulnerabilities reported in Common

Vulnerabilities and Exposures (CVE) [21] are related to memory [39].
Existing Efforts. Many static analysis-based approaches [20, 27, 34, 45, 71, 78] have been

proposed to detect memory-related vulnerabilities and shown their effectiveness. They use pre-
defined vulnerability patterns to search for improper memory usage [63]. However, manually
writing vulnerability patterns is highly dependent on expert knowledge, which is a labor-intensive
process and subject to error-prone as well as time-consuming tasks. Recently, benefiting from the
powerful performance of Deep Learning (DL), a number of approaches [12, 15, 25, 47, 49, 50,
77, 84, 98, 99] have been proposed to leverage DL models to learn program semantics to identify
potential software vulnerabilities. Figure 1 presents the typical DL-based vulnerability detection
pipeline. It operates in three phases, namely, representation learning phase, training phase, and
detection phase. In the representation learning phase, training samples (both vulnerable and non-
vulnerable code) are converted into abstract code representations (e.g., trees [64] and graphs [93])
containing rich syntactic and semantic information, and embedded as compact and uniform length
feature vectors through DL models, such as Recurrent Neural Network (RNN) [38] and Graph

Neural Network (GNN) [92]. Then, these high-dimensional feature representations are used to
train a detection model that can demarcate the vulnerable examples from non-vulnerable exam-
ples. Code snippets to be analyzed will be fed into the well-trained detection model to predict
whether they are prone to vulnerabilities or not. Compared with traditional static analysis-based
approaches, DL-based approaches can automatically extract implicit vulnerability patterns from
prior vulnerable code instead of requiring expert involvement [94].

Limitations. Despite their tremendous progresses, the performance of existing DL-based
general vulnerability detectors is still far away from the satisfactory when applied to detecting
memory-related vulnerabilities due to the following three main limitations. (1) The first is that
contextual program semantics related to vulnerabilities are not well captured. Recent works
[19, 75] have reported that interprocedural program contexts (e.g., control- and data-flows)
cover comprehensive code features and are beneficial to memory-related vulnerability detection.
Unfortunately, in the representation learning phase (as shown in Figure 1), almost all DL-
based vulnerability detection approaches perform intraprocedural analysis at the function-level
[12, 15, 84, 99] or slice-level [19, 49, 50, 101] to extract syntactic and semantic information of
vulnerable code. Due to the complicated program logic in real-world scenarios, interprocedural
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Fig. 1. DL-based vulnerability detection pipeline.

operations (e.g., releasing the heap memory allocated by another function) are common and
inevitable. As a result, some critical vulnerability features may be absent in a vulnerable snippet,
resulting in unsound (i.e., high false-negative rates) and imprecise (i.e., high false-positive rates)
detection results. (2) The second limitation lies in that multi-granularity vulnerability features
are treated equally although they should not be. State-of-the-art DL-based vulnerability detection
approaches usually adopt single neural network architecture to extract rich vulnerability features
from hybrid abstract representations (e.g., Code Property Graph (CPG) [93]) of vulnerable
code. Nonetheless, given the inherent hierarchical structure of source code (i.e., tokens forming
statements, and statements forming snippets), such single-architecture neural models may be
ill-suited for capturing different levels (e.g., token-level buffer size useful for detecting overflow-
like vulnerabilities and statement-level execution order effective in control flow-related memory
vulnerabilities) of program semantics. For example, limited to the long-term dependency problem
[2], popular GNN-based vulnerability detection models fail to propagate message between
distant nodes in normally large AST-based representations, leading to the information loss in
inter-level communication. (3) The third concerns the underutilization of flow information. For
simplicity, previous studies either regard hybrid code representations as homogeneous structures,
which neglect the semantic type information of different edges [19], or categorize them in a
coarse-grained manner (e.g., control- and data-flow edges) [99], obstructing the detection model
from sufficiently capturing the vulnerability features to a certain degree. A straightforward
instance is that receiving a normal pointer variable (non-vulnerable) is obviously not the same as
receiving a pointer variable, which points to the memory just released (vulnerable).

Our Solution. In this article, we propose a novel DL-based vulnerability detection approach,
named MVD+, targeted at memory-related vulnerabilities, that can learn comprehensive program
semantics and locate suspicious statements related to vulnerabilities. First, instead of simply
performing intraprocedural analysis to model local contextual features of vulnerable code, MVD+
conducts interprocedural analysis to build Abstract Syntax Tree (AST) [64] and System

Dependence Graph (SDG) [72], which explicitly maintain global syntactic and semantic
contexts across functions, and performs forward and backward slicing from the program point of
interest (i.e., slicing criteria) based on interprocedural control- and data-flows in SDG to extract
vulnerability-related code snippets. Second, to preserve the syntactic and semantic information of
source code for training an accurate detection model, MVD+ adopts a hierarchical representation
learning strategy, which performs syntax-aware neural embeddings for each statement of source
code with a tree-based neural network and feeds these unstructured (statement embeddings) and
structured information (control- and data-flows between statements) into a novel Flow-sensitive
Graph Neural Networks (FS-GNN), to learn the distributed representation of statements. By
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hierarchically processing code components at different levels (i.e., tokens and statements) with a
combination of tree-based and graph-based neural network architectures, MVD+ can effectively
learn multi-granularity features (i.e., lexical syntactic information within statements and different
flow semantics between statements) of vulnerable code. Third, in the detection phase, MVD+
formalizes the detection of vulnerable statements as a node classification problem, which receives
the graph representation of a code snippet (in which nodes represent statements and edges
indicate their relations) as input and outputs corresponding node labels (i.e., vulnerable or not).

Evaluation. To evaluate the effectiveness of our proposed MVD+, we crawl and build a new
benchmark, since existing benchmarks [27, 63] targeting at memory-related vulnerabilities are
not sufficient for training DL models. The experimental results on both function-level (i.e., predict
whether a function is vulnerable) and statement-level (i.e., locate which statements in a function
are vulnerable) vulnerability detection tasks demonstrate that MVD+ can significantly outperform
state-of-the-art static analysis-based and DL-based detectors. Specifically, MVD+ outperforms
current DL-based and static analysis-based approaches significantly with 9.47–22.46% higher
Precision and 12.64–28.02% higher Recall.

In summary, our main contributions are as follows:

• We propose MVD+, a novel DL-based approach that hierarchically captures syntactic and
semantic information of source code by leveraging tree-based and graph-based neural net-
works to effectively support memory-related vulnerability detection at the statement-level.
• We design a novel Flow-Sensitive Graph Neural Network, called FS-GNN, to jointly consider

heterogeneous flow information for capturing the patterns of vulnerable code.
• We construct a large-scale benchmark repository targeted at memory-related vulnerabilities.

The vulnerability repository, called MemoryVul [59], is composed of 37,735 function-level
code snippets (8,163 of which are vulnerable) with statement-level ground-truths (i.e., which
statements in a function are vulnerable) from 12 well-known C/C++ projects.
• We compare MVD+ with five static memory analyzers and eight DL-based vulnerability de-

tectors (five for function-level detection and three for statement-level detection). Experimen-
tal results show that MVD+ outperforms the existing approaches on both function-level and
statement-level vulnerability detection.

Article Organization. The remainder of this article is organized as follows. Section 2 introduces
the background knowledge related to the proposed approach. Then, we describe the details about
MVD+ in Section 3. Section 4 presents the experimental setup, followed by the evaluation results in
Section 5. Section 6 gives a case study about MVD+ and threats to the validity. Section 7 surveys the
related work. Finally, Section 8 summarizes this article. This article extends our prior publication
[13] presented at the 44th International Conference on Software Engineering (ICSE’22), which pre-
sented our MVD approach to detect memory-related vulnerabilities at the statement-level based
on FS-GNN. In this follow-up work, we focus on further improving model performance and exper-
iment solidity. New materials with respect to the conference version include:

• We further improve the approach by proposing a hierarchical representation

learning strategy to capture multi-granularity semantic information of vulner-

able code. In the conference version, the proposed approach adopts Doc2Vec [44] to
transform statements into low-dimensional feature vectors as initial representations for
graph learning, which has a negative influence on capturing fine-grained token-level
semantics of statements. Learning program semantics with the strategies proposed in this
article improves the performance of MVD [13] on both function-level and statement-level
vulnerability detection tasks. The details are presented in Section 3.2.
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• We build a larger and more diverse benchmark repository, called MemoryVul,
to improve the quality of training data. In the conference version, the dataset we
constructed is small-scale (only containing 4,353 vulnerable samples) and imbalanced
(CWE-119 and CWE-476 account for 60%), which may threaten the effectiveness of the
pre-trained detection model in practice. In this extended version, we re-train MVD+ and
baselines on the enlarged MemoryVul benchmark for evaluation. It now contains 5,266
synthetic and 1,613 real-world memory-related vulnerabilities (58% larger than the previous
one). For each vulnerability, we provided the vulnerable code version, the fixed code version,
the vulnerable code line, and the vulnerability type. We plan to open-source our dataset
and approach [59] to facilitate other research works on memory-related vulnerabilities.
• Additional experimental comparison with recently proposed statement-level DL-

based detectors are provided. In the conference version, we only compare our approach
with three DL-based approaches. As of this extended version, multiple statement-level
approaches have been proposed. Thus, we adopt two fine-grained metrics, Mean First

Ranking (MFR) and Mean Average Ranking (MAR), to measure and demonstrate the
statement-level prediction performance of the proposed approach compared with these
newly presented baselines. The details are provided in Section 4.5.1.

2 PRELIMINARIES

In this section, we first introduce several basic concepts relevant to DL-based vulnerability detec-
tion, the motivation of our approach, and the DL models used in this article.

2.1 Definitions

Definition 1 (Code Snippet, Statement, and Token). Following the definition of Reference [101],
a code snippet C is an ordered set of statements {s1, s2, . . . , sm }, where si (1 ≤ i ≤ m) denotes
the ith statement in the code snippet C and m is the total number of code lines. A statement si

is an ordered set of tokens {ti,1, ti,2, . . . , ti,n }, where ti, j (1 ≤ j ≤ n) denotes the jth token in the
statement si and n is the total number of code tokens. A token ti, j is a piece of code text that can
be an identifier, operator, constant, keyword, and anything else that can be extracted by a lexical
parser [37].

Definition 2 (Abstract Syntax Tree). AST is a kind of data structure that organizes a code snippet
C as a tree to represent the syntactic features of source code [64]. Formally, an AST for a code
snippet C is a tuple (VA,EA, λA, μA), where VA denotes a set of tree nodes corresponding to con-
structs or symbols of source code, EA are the corresponding tree edges labeled as AST edges by the
labeling function λA, and μA is a function that maps a node to an associated value (the operator or
operand the node represents).

Definition 3 (System Dependence Graph). SDG [72] is derived from a set of Program Depen-
dence Graph (PDG) [30] connected by the caller-callee relations. Given a code snippet C =
{s1, s2, . . . , sm }, a PDG G = (VP ,EP , λP , μP ) represents data and control dependencies among state-
ments, whereVP ⊆ VA corresponds to statement nodes in AST, EP is a set of directed edges labeled
by the function λP : EP → ΣP where ΣP corresponds to semantic associations (control and data
dependencies) between statement su and sv (1 ≤ u < v ≤ m).

Definition 4 (Code Slice). Consider a code snippet C = {s1, s2, . . . , sm }, a PDG G, and a statement
si (1 ≤ i ≤ m) containing the program point of interest pi , a code slice S′ = Sf ∪ Sb is an ordered
set of statements in C, where Sf is a set of statements obtained by traversing the PDG G forward
from the program point pi , and Sb is collected by traversing the PDG backward from pi to all
reachable statements [88].

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 43. Pub. date: December 2023.



43:6 S. Cao et al.

Fig. 2. Motivating example.

Definition 5 (Statement-level Vulnerability Detection). Statement-level vulnerability detection can
be formalized as a binary classification task, i.e., learning to determine whether a statement si in a
given code snippet C is vulnerable or not. Let a sample of data can be defined as ((si , li |si ∈ S, li ∈
L), i ∈ {1, 2, . . . ,m}, where S denotes the set of statements in the code snippet C, L = {0, 1}m
represents the label set with 1 for vulnerable and 0 otherwise, and m is the number of statements
in C. The goal of neural networks in vulnerability detection is to fit a function f : S → L to
predict whether a statement is vulnerable or not.

2.2 Motivation

Figure 2(a) shows a typical Use-after-free (UAF) vulnerability CVE-2019-15920 [23] in Linux
Kernel [51]. The vulnerable function SMB2_read() (lines 2-16) is simplified for a clear illustration.
We can observe that the memory space pointed by the pointer req (line 6) is released in advance
by the function mempool_free() (line 25) in the statement cifs_small_buf_release(req) (line 8),
while it is still used at line 10. This problem may result in a system crash or other security impacts.
Despite the support of precise interprocedural analysis, this vulnerability may not be detected
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by static memory detectors if they do not know that the function cifs_small_buf_release()
behaves like a free() function [4, 33].

Inspired by the good performance of DL in learning program semantics, it is natural to train a
classification model to detect whether a given code snippet is vulnerable or not. These approaches
generally combine multiple abstract representations (e.g., CPG [93], which is a widely used code
representation composed of AST, Control Flow Graph (CFG) and PDG) to represent source code
and design deep neural networks to learn the syntactic and semantic features of vulnerabilities.
However, such a multi-granularity (covering token-level tree nodes and statement-level graph
nodes) and heterogeneous (nodes are connected by different types of relations, such as control-
and data-dependencies) code representation will complicate embedded graphs and learn irrelevant
features [99].

Taking the simplified CPG of the vulnerable function SMB2_read illustrated in Figure 2(a) as
an example. The propagation path of the tainted variable req is highlighted in blue. To learn the
vulnerability logic that the released variable req is re-used again, the neural network should be able
to capture the long-range information passing (involving seven-hop neighbors) from the released
req at line 8 to the re-used one at line 10. Unfortunately, GNN models are prone to the long-
term dependency problem [2], resulting that they fail to propagate message between distant nodes
in normally large AST-based representations. As observed by the recent work [90], the overall
performance of the popular CPG-based vulnerability detection approaches degrades sharply as the
number of nodes increases. To alleviate the inherent limitation, some works [19, 36] adopt coarse-
grained abstract representations such as PDG, which models the semantic information of source
code at the statement-level, as basic components to extract vulnerability features. However, such
global statement embeddings may hard to capture local vulnerability semantics (e.g., req) within
fine-grained code tokens.

Inspired by the hierarchical structure of source code (i.e., coarse-grained code components are
represented by combining fine-grained ones together), we adopt a hierarchical representation
learning strategy, which combines tree-based and graph-based neural networks to, respectively,
capture the syntactic and semantic information of source code, for multi-granularity vulnerability
feature extraction. In addition, to learn precise code semantics from heterogeneous representations,
we propose FS-GNN, a novel graph neural network that jointly embeds both unstructured node
embeddings and structured flow relations of neighbors to update the embedding of the central
node, to better preserve context information of statements.

2.3 Tree-based Neural Networks

Tree-based Neural Networks (TNNs) have been proposed to learn code embedding from the
AST of a program to support downstream software engineering (SE) tasks, such as code clone
detection [86, 91, 95, 96] and method name prediction [3, 9, 61]. As illustrated in Figure 3(a), TNNs
update node representations by receiving information from their children.

TBCNN [61] is the first deep neural network for program language processing. It uses a tree-
based convolution kernel, which applies a set of fixed-depth feature detectors by sliding over the
entire AST, to learn node embeddings in a bottom-up way, and introduces continuous binary trees
to cope with ASTs of different sizes and shapes by dynamic pooling. The core convolution layer
of TBCNN can be formalized as follows:

y = tanh ��
n∑

i=1

W conv,i · xi + bconv
�
� , (1)

where x i (1 ≤ i ≤ n) is the vector representation of node i within each sliding window,W conv,i

are the weight matrices, and bconv is the bias term.
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Fig. 3. The comparison between tree-based and graph-based neural networks, where the green dotted arrow

represents the direction of node information propagation and the dash area is the context of target node

shaded in red.

ASTNN [96] is a novel AST-based neural network for source code representation. To solve
the the gradient vanishing and long-term dependency problems experienced by previous ap-
proaches, ASTNN splits large ASTs into a sequence of small statement trees, and computes the
vector representations of statements by recursively encoding multi-way statement trees. The
vector representation of the non-leaf node n in a statement tree is computed by the following
equation:

h = σ ��
�W

�
nvn +

∑

i ∈[1,C]

hi + bn
��
� , (2)

whereW n is the weight matrix, vn is the lexical vector of node n, hi is the hidden state for each
children node i ∈ [1,C] of the non-leaf node n, bn is the bias term, σ is the activation function
such as tanh, and h is the updated hidden state.

Finally, the final representation of a statement tree is obtained by a max pooling layer.
Tree-LSTM [80] is another popular tree-based code embedding model. Different from standard

LSTM, the gating vectors and memory cell updates of Tree-LSTM are dependent on the states
of possibly many child units for state updating across the tree structure. Additionally, instead of
a single forget gate, Tree-LSTM contains one forget gate fjk for each child k (as calculated in
Equation (3)), which allows it to selectively incorporate information from each child:

fjk = σ
(
W

(f )
x j
+U

(f )
hk
+ b (f )

)
, (3)

where k ∈ C (j ), C (j ) denotes the set of children of node j.
Inspired by the promising results on multiple code-related tasks, we propose that the ability

to capture the lexical and syntactic information of programs makes TNN a suitable neural archi-
tecture to encode code statements. These feature representations can be used as initial node em-
beddings of GNNs to learn code semantics (e.g., control- and data-dependence) across statements.
In this work, we make use of ASTNN due to its effectiveness in learning statement-level vector
representations and alleviating long-term dependency problem.

2.4 Graph-based Neural Networks

Due to the outstanding ability in learning program semantics, GNNs have been applied to a variety
of SE tasks (e.g., variable misuse prediction [1], vulnerability detection [99], and bug localization
[55]) and have achieved great breakthroughs. As shown in Figure 3(b), modern GNNs follow a
neighborhood aggregation scheme, where the representation of a node is updated by iteratively
aggregating representations of itsk-hop neighbors, to capture the structural information of graphs.
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Fig. 4. Overview of MVD+.

This procedure can be formulated by

h (t )
v = σ

(
h (t−1)

v ,AGG (t )
({
h (t−1)

u : u ∈ N (v )
}))
, (4)

where h (t )
v is the feature representation of nodev at the t th iteration, u ∈ N (v ) is the neighbors

of v , and AGG (·) and σ (·) denote aggregation (e.g., MEAN ) and activation (e.g., ReLU ) functions
for node feature computation.

According to different goals, the final node representation h (T )
v can be used for graph classifica-

tion, node classification, and link prediction [92].
Graph Classification. Given a graph Gi = (V ,E,X ) ∈ G and a set of graph labels L =
{l1, . . . , lm }, where each nodev ∈ V is represented by a real-valued feature vector xv ∈ X andm de-
notes the number of graph labels, graph classification aims to learn a mapping function f : G → L
to predict the label of the ith graph Gi .

Node Classification. Given a graph G j = (V ,E,X ) ∈ G and its node label set L = {l1, . . . , ln },
node classification aims to learn a mapping function д : V → L to predict the label of node v .

Link Prediction. Given node u and node v , link prediction aims to predict the probability of

connection between node u and node v by yu,v = ϕ (h (k )
u ,h

(k )
v ), where h (k )

u and h (k )
v are the node

representations after k iterations of aggregation and ϕ (·) refers to the composition operator such
as Inner Production.

Existing DL-based approaches parse a program into a structured graph with multiple types of
edges and view vulnerability detection as a graph classification task. However, the rich contextual
program semantics related to vulnerabilities have not yet been fully utilized, and the detection
granularity is still coarse-grained. Hence, to overcome the limitations of existing approaches, we
have proposed a novel FS-GNN. FS-GNN jointly embeds both statement embedding and flows
information to capture sensitive contextual information for semantic learning. Section 3.3 explains
the detailed architecture of FS-GNN.

3 OUR APPROACH: MVD+

Figure 4 shows the overview of MVD+. Overall, it consists of two phases: training phase and
detection phase.
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The training phase includes three steps. In step 1, MVD+, respectively, performs intraproce-
dural and interprocedural analysis to build AST and SDG to capture rich syntactic and semantic
information of source code. To reduce irrelevant semantic noise introduced by the distribution of
vulnerable and non-vulnerable statements in the training data, MVD+ conducts program slicing
[76, 88] from the program points of interest. To preserve rich syntactic and semantic information
of source code, MVD+ adopts a hierarchical representation learning strategy (step 2 and step

3) for code embedding. In step 2, MVD+ leverages Byte Pair Encoding (BPE) [69] to build a
subword tokenizer for token embedding, and constructs a statement encoder to transform each
statement into low-dimensional vector representations to capture both lexical and syntactic
information of source code. In step 3, we designs a novel FS-GNN to jointly embed nodes and
edges in code slices to learn implicit vulnerability patterns and re-balance node labels distribution.
Finally, a well-trained model is produced for memory-related vulnerability detection at the
statement-level.

In the detection phase, MVD+ first splits the target program into functions and repeats feature
extraction (step 1) and node embedding (step 2) to obtain code slices and their corresponding
vector representations. Then, for each slice, both its unstructured (i.e., statement embedding by
statement encoder) and structured (i.e., control- and data-flow) information are fed into the well-
trained detection model as graph inputs for vulnerability detection.

3.1 Feature Extraction

Previous studies [58, 73] have shown that combining diverse dimensional code representations,
such as CPG, is beneficial for DL models to capture the program semantics. To this end, conduct
intraprocedural and interprocedural analysis to build AST and SDG, respectively. AST reflects the
syntax structure of a function and SDG provides the control- and data-flow information between
statements within- and cross-functions. These two code representations preserve rich syntactic
and semantic information of programs beneficial to feature representation learning. However, a
single function usually contains dozens or even hundreds of code lines while the vulnerability
exists only in a few lines of code, simply taking the whole program to train a detection model
will degrade the capability to identify key features relevant to vulnerabilities. Thus, MVD+ adopts
program slicing [88] to perform backward and forward slicing based on SDG from a program point
of interest to filter noise induced by irrelevant statements.

To ensure that the extracted program slices contain memory-related vulnerabilities, we mainly
focus on two types of program points of interest: (1) system API calls and (2) pointer variable. As
mentioned in previous works [19, 49, 50, 101], the misuse of system API calls is one of the major
causes of vulnerabilities, including memory-related vulnerabilities. For example, syscall_buf is a
typical system API call related to buffer operations in Linux Kernel. It often occurs in Out-of-bounds
Read/Write and other similar buffer-related vulnerabilities. In total, we collect 537 system API calls
from popular static memory detectors [27, 71] and security operation checkers [4, 53] as slicing
criteria for extracting vulnerable code snippets. For pointer variable, it has been widely adopted
by traditional static analysis-based approaches [27, 45, 78]. It should be noted that starting
from the program point of interest, we perform backward slicing according to both control-
and data-dependence, but forward slicing based on only data-dependence, because improper
memory operations (e.g., allocating memory but not freeing it) have been involved in the forward
data-dependence, while usually forward control-dependence will cover a great deal of irrelevant
statements that would not be vulnerable in most cases [49].

Figure 5 provides an example to show the process of our feature extraction. As shown in
Figure 5(a), it is a memory leak vulnerability. At line 5, it allocates memory through malloc() in
function memory_leak_func() without freeing even to the end of the program. In our approach,

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 43. Pub. date: December 2023.



Learning to Detect Memory-related Vulnerabilities 43:11

Fig. 5. Details of our program slicing based on interprocedural control- and data-flow analysis.

the interprocedural control- and data-flow information of the vulnerable program is first extracted
to construct the SDG of the program, which is shown in Figure 5(b). To reduce irrelevant nodes,
we adopt the sensitive function call at line 5 (i.e., Node 5 highlighted in red) as the program point
to perform backward and forward slicing. Node 6 is control-dependent on Node 5 with an Edge
5 → 6, and data-dependent on Node 4 with an Edge 4 → 6. After slicing, Node 6 is removed,
because it is not data-dependent on Node 5.

3.2 Node Embedding

Existing DL-based vulnerability detectors [15, 84, 99] view the AST as a special graph structure
and leverage GNNs to learn program semantics from diverse code representations (e.g., AST, CFG,
and PDG) for model training. However, the neighborhood aggregation scheme (as described in
Section 2.4) adopted by GNNs is ill-suited for modeling tree structures, because the hierarchical
syntactic information between parent and children nodes is hard to capture effectively.

To this end, we adopt a hierarchical representation learning strategy, which performs syntax-
aware neural embedding for each statement of source code and feeds these unstructured (code
embeddings of statements) and structured information (control- and data-flows between state-
ments) into the GNN model to learn the distributed representation of statements. Specifically,
we first apply the BPE algorithm to capture the lexical information of code tokens. Code tokens
(i.e., the leaf nodes of ASTs) will be split and merged into meaningful subwords, and embedded
into the fixed-size vector representations through the pre-trained CodeBERT model [29]. The
use of BPE subword tokenization will help reduce the vocabulary size, alleviating the problem of
Out-of-vocabulary (OOV) in code embedding.

Then, these token embeddings are served as initial feature representations to train a statement
encoder. We adopt ASTNN [96] as the basic component of our statement encoder (as shown in
Figure 6), because it can effectively alleviate the gradient vanishing and long-term dependency
problems in TNNs. In particular, an AST T of a function is decomposed to a sequence of multi-
way (a tree with more than two children nodes) statement trees (ST-tree) by traversing each
node of T in a depth-first walk. Given a ST-tree t ∈ T , the vector representations of its non-leaf
node are updated by Equation (2). Next, all nodes along with their feature vectors in the ST-tree
t are fed into a max pooling layer to calculate the final representation xu of its corresponding
statement u:

xu = [max (hi1), . . . ,max (hik )], i = 1, . . . ,N , (5)

where N is the number of nodes in a ST-tree t .
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Fig. 6. The statement encoder used in our node embedding module.

Based on our syntax-aware neural embedding strategy, the feature vector of each statement
node in SDG can preserve both lexical and syntactic information of source code.

3.3 Graph Learning

To train a model that can learn implicit vulnerability patterns from source code and locate suspi-
cious vulnerable statements, we construct a novel graph learning framework, FS-GNN for graph
learning. The details of our approach are shown in Figure 7. The key insight of FS-GNN is to jointly
embed both statement embedding and flows information to capture sensitive contextual informa-
tion for semantic learning. FS-GNN is composed of three parts: graph embedding, resampling, and
classification.

Graph Embedding. Different from most of the existing graph embedding approaches that em-
bed only nodes in the graph, we leverage the entity-relation composition operations ϕ (·) used in
Knowledge Graph embedding approaches [7, 18] to jointly embed statement nodes and multiple
flow edges to incorporate edge embedding into the update of node information. To be specific,
during the process of graph embedding in FS-GNN, the node embedding hv of statement node v
can be updated by

hv = f ���
∑

(u,r )∈N (v )

W λ (r )ϕ (xu ,zr )��� , (6)

where hv denotes the updated representation of node v . N (v ) is a set of immediate neighbors
of v for its outgoing edges. ϕ (·) is a composition operator, including subtraction, multiplication,
and circular-correlation. xu and zr denotes initial features for node u (encoded by our syntax-
aware statement encoder in Equation (5)) and edge r , respectively. Similar to traditional Rela-

tional Graph Convolutional Networks (RGCN) [68], initial edge representation for edge r
can be encoded by basis decomposition [68] as zr =

∑B
b=1

αbrvb , where vb ∈B is a set of learn-
able basis vectors and αbr ∈ R is also the learnable scalar weight specific to edge type and basis.
W λ (r ) represents a edge type specific parameter. To make FS-GNN context-aware and capture im-
portant information from outgoing edges, we double edges by adding inverse edges and assign
different weight parameters according to edge types (i.e., W λ (r ) =W O when r is an initial edge,
andW λ (r ) =W I when r is an inverse edge).

Similarly, the edge embedding hr of edge r can be updated by hr = W r elzr , where W r el is
a learnable transformation matrix that projects all the relations to the same embedding space as
nodes.
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Fig. 7. Graph learning with FS-GNN.

Finally, the representation of a node v and edge r updated after l layers are shown as

hl+1
v = f ���

∑

(u,r )∈N (v )

W l
λ (r )ϕ (hl

u ,h
l
r )��� , (7)

hl+1
r =W l

r elz
l
r . (8)

Note that h0
v = xu and h0

r = zr (i.e., initial representation of node v and edge r ).
With the help of our flow-sensitive graph learning, contextual information can be captured and

sensitive flow information is given more attention. For example, in Figure 7, initial node represen-
tation is encoded by Doc2Vec and edge representation is calculated by basis decomposition. Edge
matrix is inversed first to capture contextual feature information. Then, to aggregate information
from neighbor nodes to update the representation of Node 3, initial representations of Nodes 1,
4, and 5 are embedded jointly with their incoming edges (i.e., Edges 3 → 1, 3 → 4, 3 → 5) by
Equation (7) to preserve some important features from outgoing nodes.

Resampling. After l layers graph learning, directly training the classifiers on all statement
nodes is biased, because the distribution of non-vulnerable nodes and vulnerable nodes is ex-
tremely imbalanced. For example, in Figure 5(b), although we have filtered out some irrelevant
nodes by program slicing, the number of non-vulnerable nodes (i.e., Nodes 1–4, 6, 8–11) is still
larger than that of vulnerable nodes (i.e., Node 5). To generate some synthetic vulnerable nodes to
re-balance the distribution, we adopt GraphSMOTE [97], a graph-level oversampling framework,
as the basic component for our resampling.

Concretely, it contains two steps: (1) node generation and (2) edge generation. First, to generate
high-quality synthetic nodes, we utilize the widely used SMOTE [16] algorithm to perform inter-
polation on vulnerable nodes. It searches for the closest neighbour node around each minority
node (i.e., vulnerable node) in the embedding space and generates synthetic nodes between them.
Then, edge generator adopts weighted inner production [97] to generate edges and gives link
predictions for synthetic nodes by setting a threshold η to keep the connectivity of the graph. If
the predicted probability of connection between synthetic node v ′ and its closest neighbor node u
is greater than η, then both the synthetic node v ′ and edge [v ′,u] will be put into the augmented
adjacency matrix of original graphs. To make the analysis easier, the type of all synthetic edges
is set as “Control” (i.e., synthetic nodes are control-dependent on their neighbor nodes).1

Owing to the contribution of resampling, the proportion of memory-related vulnerable
statements increases, avoiding the well-trained detection model biased caused by imbalanced

1We omit data-dependency flow, because during the empirical study, we find that a large number of irrelevant synthetic

data-dependency edges can introduce biases and make the performance of the detection model deteriorate.
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distribution of vulnerable nodes and non vulnerable nodes. For example, in Figure 7, three
synthetic nodes (Pink-shaded) are connected with one vulnerable node (i.e., Node 5) and one
non-vulnerable node (i.e., Node 11).

Classification. Before training the classification model, FS-GNN adopts one-layer flow-sensitive
graph learning block in Section 3.1 again to update node information by Equation (7). By learn-
ing both the unstructured (i.e., statement embedding) and structured (i.e., various flows) features
from nodes and edges, the classification model are employed to distinguish vulnerable and non-
vulnerable statements.

To train the model, we use the softmax activation function as the last linear layer for node
classification and minimize the following cross-entropy loss on all labeled nodes (i.e., vulnerable
or non-vulnerable):

min
θ
L = −

∑

G ∈G

1

|V |
∑

i ∈V

K∑

k=1

tik lnh (L)
ik
, (9)

where G is a code slice graph in the training set G, V is the set of nodes in our training set. h (L)
ik

represents the probability of node i belonging to class k , where k = {0, 1} for the binary node
classification task. tik denotes respective ground truth label for node i .

3.4 Vulnerability Detection

In the detection phase, we apply the well-trained model to detect potential memory-related vul-
nerabilities in programs and locate suspicious statements.

Specifically, similar to training phase, program semantics reflected in the graph representations
of source code are captured through interprocedural analysis. To reduce the number of memory
operations-irrelevant statements, programs are sliced according to points of interest (system API
calls and pointer variable) to obtain a batch of program slices (Section 3.1). Next, statement nodes
in program slices are embedded into low-dimensional vectors through syntax-aware statement
encoder (Section 3.2). Finally, both unstructured (i.e., statement embedding) and structured (i.e.,
control- and data-flow) information are used as graph input to feed into the well-trained detection
model for vulnerability detection.

4 EXPERIMENTAL SETUP

4.1 Research Questions

In this section, our experiments focus on answering the following Research Questions (RQs):
RQ1: Effectiveness. In particular, we would like to investigate:

— RQ1a: Can MVD+ outperform state-of-the-art DL-based vulnerability detection approaches?

The studies that are most relevant to MVD+ are DL-based vulnerability detection approaches.
By investigating this RQ, we aim to answer how effective MVD+ performs in memory-related
vulnerability detection comparing with the state-of-the-art DL-based approaches.

— RQ1b: Can MVD+ outperform traditional static analysis-based vulnerability detectors?

Static analysis-based vulnerability detection tools are widely used and perform well on memory-
related vulnerabilities. In addition, static analysis-based approaches can identify the statement-
level results for vulnerability detection (i.e., fine-grained detection results). Therefore, the purpose
of this RQ is to analyze how effective MVD+ performs compared with existing static analysis-based
detectors.
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RQ2: Efficiency. How efficient is MVD+ compared with baselines in terms of time cost of detecting
memory-related vulnerabilities?

Efficiency is important for evaluating the performance of memory-related vulnerability detec-
tion approaches. An approach that costs too much time for detecting vulnerabilities may encounter
adoption barriers in practice. This RQ is to investigate whether MVD+ can make a reasonable trade-
off between accuracy and efficiency.
RQ3: Ablation Study. In this work, we perform both intraprocedural and interprocedural anal-
ysis to model vulnerability features, and adopt a novel hierarchical representation learning strat-
egy with syntax-aware node embedding and flow-sensitive graph learning. Thus, we, respectively,
study the contribution of each component:

— RQ3a: How does interprocedural contexts contribute to the performance of vulnerability feature
extraction?

Almost all DL-based approaches extract vulnerability features from vulnerable functions or
slices, which reduce the difficulty and overhead of static analysis while also lose a part of contextual
program semantics. Thus, in this RQ, we focus on investigating that whether the interprocedural
contextual semantics are beneficial to improving the quality of vulnerability features?

— RQ3b: To what extent does the syntax-aware node embedding strategy influence the perfor-
mance of vulnerability feature learning?

Due to the gap between tree-based and graph-based code representations, simply leveraging a
unified neural network model (e.g., GNN) to learn program semantics from mixed code represen-
tations may confuse different feature information of vulnerabilities. To this end, we aim to study
whether learning code syntactic features first by adopting a tree-based node embedding strategy
can improve the performance of subsequent vulnerability feature learning?

— RQ3c: Is the flow-sensitive graph learning powerful in capturing precise program semantics?

One of the key contributions of our approach is flow-sensitive graph neural network, which
jointly embeds both unstructured (i.e., code snippets) and structured (i.e., control- and data-flows)
information to learn comprehensive program semantics. We aim to show whether sensitive con-
textual information captured by FS-GNN contributes to memory-related vulnerability detection in
comparison with other popular GNNs.

4.2 Dataset

4.2.1 Data Collection. Existing vulnerability datasets are either not tailored for memory-
related vulnerabilities [15, 28, 99], or not sufficient for training DL models (e.g., SPEC CINT2000
[35]). To this end, we constructed MemoryVul [59], a large-scale memory-related vulnerability
dataset, which covers 23 common memory-related vulnerabilities (including CWE-119, -120, -121,
-122, -124, -125, -126, -127, -131, -188, -244, -401, -415, -416, -476, -590, -761, -763, -787, -789, -805,
-806, and -824 [22]). MemoryVul is based on two data sources: (1) SARD [74], a collection of test
cases (varying from synthetic programs to real-world applications) with known vulnerabilities;
and (2) CVE [21], a well-known vulnerability database. In this work, we focused on applications
written in C/C++ due to their frequent memory problems caused by low-level control of memory
[79]. Finally, 11 popular open-source applications are selected as target projects.

Table 1 reports the statistics of MemoryVul. In total, there are 1,613 real-world vulnerabilities in
CVE and 5,266 test cases in SARD. Columns 3–5 denote the function-level statistics of each project,
including the number of vulnerable functions (Column 3), non-vulnerable functions (Column

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 43. Pub. date: December 2023.



43:16 S. Cao et al.

Table 1. Statistics of MemoryVul

Project # Samples
Function-Level Slice-Level

# Vul # Non-vul Total # Vul # Non-vul Total

Linux Kernel 934 1,176 9,063 10,239 2,561 16,823 19,384
FFmpeg 84 92 717 809 164 1,527 1,691
Asterisk 18 19 184 203 43 415 s458
Libarchive 24 29 276 305 64 503 567
LibTIFF 24 26 193 219 57 368 425
Libav 16 16 102 118 27 184 211
LibPNG 13 13 107 120 35 191 226
QEMU 121 146 1,535 1,681 383 3,705 4088
Wireshark 57 64 443 507 158 725 883
OpenSSL 46 52 397 449 142 646 788
Chromium 276 338 2,869 3,207 670 4,862 5,532

SARD 5,266 6,192 13,686 19,878 10,269 22,417 32,686

Total 6,879 8,163 29,572 37,735 14,753 52,366 67,119

Fig. 8. Distribution of Vulnerability Types.

4), and total functions (Column 5). Similar, Columns 6–8, respectively, represent the number
of vulnerable slices (Column 6), non-vulnerable slices (Column 7), and total slices (Column 8).
Furthermore, the distribution of different types of memory-related vulnerabilities in our dataset
is shown in Figure 8, with CWE-119 (Improper Restriction of Operations within the Bounds
of a Memory Buffer, 14%), CWE-476 (NULL Pointer Dereference, 10%), and CWE-124 (Buffer
Underflow, 8%) accounting for the top three vulnerability types.

4.2.2 Data Labeling. To train a detection model, we first need to conduct data labeling. There
are two types of labels for statement nodes in the graph representation of a program: (1) vulnerable
represents that the node is related to an improper operation in the vulnerable programs; (2) non-
vulnerable represents that the node is related to the normal operation. To make this process
automatic, we adopted a simple labeling strategy with diff files [6, 36]. We first conduct program
slicing for each vulnerable sample to generate a number of slices. Then, for each slice of the
samples in SARD, we labeled the statement nodes annotated with “errors” as vulnerable. For each
slice of the real-world vulnerabilities in CVE, we compared statements in each slice and that in
the corresponding vulnerable function according to diff files. If a statement was deleted or altered
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Table 2. Details of DL-based Baselines

Approach Granularity
Feature Extraction Training and Detecting

Code Representation Node Embedding Model Type Model
VulDeePecker Slice DDG Word2Vec RNN BLSTM

SySeVR Slice PDG Word2Vec RNN BGRU
DeepWuKong Slice PDG Doc2Vec GNN GCN

Devign Function AST+CFG+DDG+NCS Word2Vec+Node Type GNN GGNN
ReVeal Function CPG Word2Vec+Node Type GNN GGNN

IVDetect Statement AST+PDG Glove+Tree-LSTM+BGRU GNN GCN+GNNExplainer
LineVD Statement PDG CodeBERT GNN GAT
LineVul Statement Sequence Word&Positional Encoding Transformer CodeBERT
MVD Statement PDG+CG Doc2Vec GNN FS-GNN

(i.e., starting with “-” in diff files), then it would be labeled as vulnerable, and non-vulnerable
otherwise. However, in practice, part of memory-related vulnerabilities did not contain “-” in
their patches. For example, in CVE-2019-19083 [24], memory leaks because allocated memory
cannot be released when memory allocation fails. This vulnerability can be fixed by adding a
memory release statement. Thus, for these vulnerabilities can not be directly labeled, we manually
labeled vulnerable nodes through identifying improper operations [56] (e.g., memory allocation
or deallocation statements). To avoid introducing artificial deviation, two postgraduates and one
Ph.D participated in this labeling process. If two postgraduates disagreed on the label of the same
sample, then the sample would be forwarded to the Ph.D. evaluator for further investigation.

4.3 Baselines

To evaluate our approach, we compared MVD+ with both DL-based and static analysis-based vul-
nerability detection approaches.

4.3.1 DL-based Approaches. We selected eight state-of-the-art DL-based vulnerability detec-
tion approaches and our previous work [13] as baselines. The details are shown in Table 2.

• VulDeePecker [50] extracts program slices based on data-flows between statements and
leverages BLSTM to detect buffer error vulnerabilities (CWE-119) and resource management
error vulnerabilities (CWE-399).
• SySeVR [49] improves VulDeePecker by performing forward and backward program slicing

on PDG to extract control- and data-flow-related code snippets as features and adopts several
RNN-based models for training (BLSTM, BGRU, GRU, etc.).
• DeepWuKong [19] generates program slices based on PDG and leverages Graph Convo-

lutional Network (GCN) to learn both unstructured and structured code information of a
program to support detection of a wide range of vulnerabilities.
• Devign [99] combines multiple code representations (e.g., AST, CFG, and DDG) to model

programs at the function-level, and adopts GGNN to learn the implicit vulnerability seman-
tics for classification.
• ReVeal [15] proposes to leverage CPG and GGNN to automatically learn the graph proper-

ties of source code.
• IVDetect [47] combines multiple embedding techniques (Glove [65], Tree-LSTM [80], etc.)

to extract the contextual information of source code for function-level vulnerability detec-
tion, and leverages GNNExplainer to interpret the detection results by providing crucial
statements (the sub-graph in PDG) relevant to vulnerabilities.
• LineVD [36] leverages GAT [82] and CodeBERT [29] to capture control- and data-

dependencies between statements, and formulates statement-level vulnerability detection
as a node classification task.
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• LineVul [32] uses a transformer-based model (BERT architecture) to generate representa-
tion of source code and leverages the attention mechanism to locate vulnerable statements.

4.3.2 Static Analysis-based Approaches. We also selected five state-of-the-art static analysis-
based vulnerability detection approaches as baselines. The details of these five approaches are
shown as follows:

• PCA [45] is a static interprocedural data-flow analysis tool that scales to industry-scale
software systems with a practical cost-effectiveness trade-off. It features a partial call-path
analysis to speed up data dependence computation.
• Saber [78] tracks the flow of values from allocation to free sites using a sparse value-flow

graph (SVFG) and detects memory leaks by solving a graph reachability problem on SVFG.
• Flawfinder [31] scans source code against its built-in vulnerability pattern database, and

produces a list of potential vulnerabilities sorted by risk.
• RATS [67] performs a rough analysis of source code and flags common security related

programming errors such as buffer overflows.
• Infer [40] statically checks a series of bugs, such as null pointer access, resource and memory

leaks, which lead to the crash of applications or serious performance degradation.

4.4 Implementation

We implemented MVD+ in Python using PyTorch [66]. Our experiments were performed with the
Nvidia Graphics Tesla T4 GPU, installed with Ubuntu 18.04, CUDA 10.1. We used Joern [93] to
construct AST and PDG for each function, and then generated SDGs based on the caller-callee
relation between functions. The hidden dimension of the statement encoder is 100. FS-GNN is
trained in a batch-wise fashion until converging and the batch size is set to 64. The dimension
of the vector representation of each node is set to 128 and the dropout is set to 0.1. ADAM [42]
optimization algorithm is used to train the model with the learning rate of 0.001. Weight decay is
set to 5e-1 and over-sampling scale is set as 1.0. The other hyper-parameters of our neural network
are tuned through grid search.

4.5 Experimental Methodology

4.5.1 RQ1: Effectiveness.

RQ1a: Comparison with DL-based Vulnerability Detection Approaches.

We compared MVD+ with the state-of-the-art DL-based vulnerability detection approaches on
both function-level and statement-level vulnerability detection tasks.

Function-Level Vulnerability Detection. We selected five function-level DL-based approaches

(VulDeePecker, SySeVR, DeepWuKong, Devign, and ReVeal) as baselines. Since MVD and MVD+
were not designed for function-level vulnerability detection, we adopted a compromise strategy,
i.e., if a vulnerable statement was identified correctly by MVD+, we would consider the function it
belonged to was also detected correctly. We used Accuracy (Acc), Precision (Pre), Recall (Rec),
and F1 as our function-level evaluation metrics.

• True Positive (TP) is the number of functions correctly predicted as vulnerable.
• True Negative (TN) is the number of functions correctly predicted as non-vulnerable.
• False Positive (FP) is the number of functions incorrectly classified as vulnerable.
• False Negative (FN) is the number of functions incorrectly classified as non-vulnerable.
• Accuracy (Acc) evaluates the performance that how many instances can be correctly la-

beled. It is calculated as: Acc = T P+T N
T P+F P+T N+F N

.
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• Precision (Pre) is the fraction of true vulnerabilities among the detected ones. It is defined
as: Pre = T P

T P+F P
.

• Recall (Rec) measures how many vulnerabilities can be correctly detected. It is calculated
as: Rec = T P

T P+F N
.

• F1-score (F1) is the harmonic mean of Recall and Precision, and can be calculated as: F1 =
2 ∗ Rec∗Pr e

Rec+Pr e
.

The whole dataset was randomly split into 80%, 10%, and 10% for training, validation, and testing.
To ensure that different types of vulnerabilities are evenly distributed in each subset, we shuffle
the dataset based on vulnerability types in parallel. For example, 80% vulnerable samples belong-
ing to CWE-119 (Improper Restriction of Operations within the Bounds of a Memory Buffer) are
demarcated as training set, and the remaining 20% samples are divided into two halves for val-
idation (10%) and testing (10%). To make sure that our model was fine-tuned, we used ten-fold
cross-validation to evaluate the generalization ability of each approach.

Statement-Level Vulnerability Detection. We selected three statement-level DL-based approaches

(IVDetect, LineVul, and LineVD) and MVD as baselines. IVDetect outputs a sequence of control-
and data-dependent statements (the sub-graph in PDG) as fine-grained detection results, while
LineVul and LineVD directly pinpoint the actual vulnerable statements. To evaluate the fine-
grained detection performance of each statement-level approach, apart from three previously used
binary classification metrics (including Pre, Rec, and F1), we also considered two imbalance-aware
metrics, Matthews Correlation Coefficient (MCC) [81] and Area Under the Precision-Recall
Curve (PR-AUC) [36], and two ranked metrics, Mean First Rank (MFR) and Mean Average
Rank (MAR) [47], to evaluate the confidence of each statement-level vulnerability detection
approach.

• Mean First Rank (MFR) is the mean of the rankings for the first true-positive vulnerable
statement located by the model.
• Mean Average Rank (MAR) is the mean of the rankings for all true-positive vulnerable

statements located by the model.
• Matthews Correlation Coefficient (MCC) measures the performance of the model on im-

balanced dataset. It is defined as: T P×T N−F P×F N√
(T P+F P )(T P+F N )(T N+F P )(T N+F N )

.

• Area Under the Precision-Recall Curve (PR-AUC) is a threshold-independent perfor-
mance metric that measures a classifier’s ability to discriminate between vulnerable and
non-vulnerable statements. PR-AUC is computed by measuring the area under the curve
that plots the Precision against Recall.

We also randomly split the dataset into the ratio of 8:1:1 for training, validation, and testing.
The performance results were obtained from the average of 10 independent runs.

RQ1b: Comparison with Static Analysis-based Vulnerability Detection Approaches.

Following Lipp et al. [52], we compared MVD+ with five static analysis-based approaches (PCA,
Saber, Flawfinder, RATS, and Infer) at the function-level, because the marked code location where
a vulnerability potentially manifests as a security-critical program state varied widely in different
static analyzers. We adopted the same experimental setup (i.e., a vulnerable function will be con-
sidered to be correctly identified if any statement in it is reported as vulnerable) and metrics (Acc,
Pre, Rec, and F1) as RQ1a for evaluation.

In addition, we also evaluated the practical performance of MVD+ in detecting different
types of memory-related vulnerabilities. However, it is challenging to compare different static
analyzers fairly because of their inconsistent classification standard of the vulnerability types
they support. For example, Flawfinder adopts CWE-120: Buffer Copy without Checking Size of
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Table 3. Mapping Relationship between CWE Categories and

Analyzer-specific Vulnerability Identifiers

Vulnerability Type CWE-ID

Buffer Overflow
119, 120, 121, 122, 124, 125, 126,

127, 131, 805, 806, 787, 824
Memory Leak 401, 590, 761, 763, 789

Double Free 415

Use After Free 416

Null Pointer Dereference 476

Input (“Classic Buffer Overflow”) to describe buffer copies without length checks, while Infer
uses Buffer_Overrun. To this end, we leveraged the CWE hierarchy [22] to map each analyzer-
agnostic CWE-ID to the corresponding analyzer-specific vulnerability identifier. The mapping
relationship is listed in Table 3. We excluded CWE-188 and CWE-244 from the evaluation, because
they (1) could not be categorized into analyzer-specific vulnerability types and (2) occupied a
relatively low proportion in the dataset (accounting for 1.21%, covering 67 vulnerable samples).
Overall, 21 types of memory-related vulnerabilities in our dataset are grouped into five common
analyzer-specific vulnerability identifiers, including Buffer Overflow (BO), Memory Leak
(MemL), Double Free (DF), Use After Free (UAF), and Null Pointer Dereference (NPD).

4.5.2 RQ2: Efficiency. For answering RQ2, we re-conducted the function-level vulnerability de-
tection experiments to compare MVD+ with both DL-based and static analysis-based approaches
under the same experimental setup as RQ1, and recorded the average training (only for DL-based
approaches) and detection time of each approach.

4.5.3 RQ3: Ablation Study.

RQ3a: Contribution of Interprocedural Contexts.

We created a variant without interprocedural contexts by directly constructing the joint graph
representation (AST and PDG), a CPG-like code representation [93] that does not contain the CFG
edge, for each input function snippet. We fairly evaluated them under two configurations: our
previous proposed MVD and MVD+, and adopted the same experimental setup and evaluation
metrics as RQ1.

RQ3b: Effect of Syntax-aware Statement Embedding.

We built multiple variants of our model by replacing the syntax-aware statement encoder
(ASTNN) with other feature embedding approaches usually seen in vulnerability detection models
[13, 47, 99], including token-based (Word2Vec [60], Doc2Vec [44], and Glove [65]) and tree-based
techniques (TBCNN [61], Tree-LSTM [80], and ASTNN (equipped with statement encoder initial-
ized by Word2Vec) [96]). We adopted the same experimental setup and evaluation metrics as RQ1.
RQ3c: Impact of Flow-sensitive Graph Learning.

We respectively replaced our graph embedding layer with three famous GNN models, includ-
ing GCN [43], GGNN [46], and RGCN [68], to evaluate the contribution of flow-sensitive graph
learning to memory-related vulnerability detection. (1) GCN scales linearly in the number of graph
edges and learns hidden layer representations that encode both local graph structure and features
of nodes. (2) GGNN uses Gated Recurrent Units and unrolls the recurrence for a fixed number
of steps and use backpropagation through time to compute gradients. It can incorporate higher
degree neighborhoods across relation graphs. (3) RGCN introduces relation-specific transforma-
tions to aggregate node information across relation graphs, and addresses over-parameterization
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Table 4. Evaluation Results on Function-level Vulnerability Detection in Percentage Compared with

DL-based Baselines

Metric
RNN-based GNN-based

VulDeePecker SySeVR Devign ReVeal DeepWuKong MVD MVD+

Accuracy 74.26 70.05 82.57 83.91 81.59 88.52 90.11

Precision 39.85 46.31 59.19 62.60 56.04 64.19 68.53

Recall 26.11 53.58 67.22 66.46 63.27 71.35 74.86

F1-score 31.55 49.68 62.95 64.47 59.43 67.58 71.55

by proposing basis and block-diagonal decomposition. In addition, to understand the contribution
of our resampling layer in training an unbiased classifier on such a highly imbalanced node clas-
sification task, we also deploy two variants of FS-GNN, one with resampling layer and the other
without. We adopted the same experimental setup and evaluation metrics as RQ1.

5 EXPERIMENTAL RESULTS

5.1 RQ1: Effectiveness of MVD+

5.1.1 RQ1a: Comparison with DL-based Approaches.

Performance of Vulnerable Function Identification. Table 4 shows the overall results of each
DL-based approach on function-level vulnerability detection in terms of the aforementioned eval-
uation metrics. Overall, MVD+ outperforms all of the six referred DL-based approaches, achieving
90.11% in Accuracy and 71.55% in F1, exceeding the best baseline (except our previous work MVD)
ReVeal by 9.47% in Precision and by 12.64% in Recall.

MVD+ vs. RNN-based Approaches. We can find that our approach relatively improves two rep-

resentative sequence-based approaches, VulDeePecker and SySeVR, by 71.96% and 47.98%, respec-
tively, in terms of Precision, and by 186.71% and 39.72%, respectively, in terms of Recall. Poor
Precision and Recall indicates that existing sequence-based approaches either give a large number
of false-positive results or miss potential vulnerabilities. The root cause for this performance gap
is that sequence-based models, such as BLSTM and BGRU, are ill-suited for modeling the well-
structured control- and data-flows of programs.

MVD+ vs. GNN-based Approaches. Table 4 shows that our approach also outperforms three

state-of-the-art GNN-based vulnerability detection baselines and MVD in every measurement met-
ric. Specifically, MVD+ improves F1 over the baselines Devign, ReVeal, DeepWuKong, and MVD by
1.13×, 1.10×, 1.20×, and 1.06×, respectively. The key reason for MVD+ to detect more true-positive
vulnerabilities than existing GNN-based approaches is that program semantics (control- and data-
flows) between statements are well-captured by our flow-sensitive graph learning. By contrast, The
existing methods either treat different code representations equally (e.g., GCN adopted in Deep-
WuKong), ignoring rich program semantics, or are difficult to expand to large program graphs
with complex semantic relations (e.g., GGNN used by Devign and ReVeal). As a result, the under-
utilization of flow information severely restricts the performance of existing GNN-based baselines
in detecting complex memory-related vulnerabilities.
Performance of Vulnerable Statement Localization. Table 5 summarizes the performance
comparison of our approach with respect to four DL-based baselines on statement-level vulner-
ability detection. As can be seen, we find that MVD+ is more precise than other existing DL-based
vulnerability locators, achieving significant improvements ranging from 10.29% (compared to Line-
Vul) to 58.61% (compared to LineVD). In particular, compared to the popular baselines, the F1-score
metric is improved by 146.07%, 56.85%, 53.85%, and 21.81%, respectively.
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Table 5. Evaluation Results on Statement-level Vulnerability Detection Compared

with DL-based Baselines

Metric IVDetect LineVD LineVul MVD MVD+

Classification

Precision 32.64 28.39 40.83 39.44 45.03

Recall 15.78 40.46 29.16 47.19 62.48

F1-score 21.27 33.37 34.02 42.97 52.34

MCC 17.92 26.81 29.35 25.07 34.72

PR-AUC 54.99 61.43 53.01 66.74 72.39

Ranked
MFR 7.35 4.87 5.51 3.94 3.06

MAR 8.64 6.31 6.82 5.52 4.88

In terms of two imbalance-aware metrics, MCC and PR-AUC, MVD+ achieves 5.37% (compared
to LineVul) and 5.65% (compared to MVD) absolute improvement over the best baseline, respec-
tively. The corresponding related improvements are 18.30% and 8.47%. The results demonstrate
that MVD+ can effectively alleviate the negative influence of class imbalance issue on fine-grained
vulnerable statement localization. In addition, for ranking vulnerable statements, our approach
improves MFR by 4.29, 1.81, 2.45, and 0.88 ranks, and improves MAR by 3.76, 1.43, 1.94, and 0.64
ranks over IVDetect, LineVD, LineVul, and MVD.

MVD+ vs. IVDetect. IVDetect leverages GNNExplainer, a model-agnostic explanation technique
for GNNs, to locate a group of statements that are control- or data-dependent on the actual vulner-
able statements. Such a sample-specific explanation suffers from efficiency (having to be retrained
for each detected vulnerable function) and precision (the located vulnerable sub-graph may not be
a substructure of the original PDG) problems. As a result, IVDetect has much higher MFR (7.35)
and MAR (8.64) that is 1.40× and 0.77× higher than our MFR and MAR, respectively.

MVD+ vs. LineVD. Similar to our approach, LineVD also formulates vulnerable statement local-
ization as a node classification task. It incorporates an element-wise multiplication between the
prediction of statement- and function-level embeddings to balance Information conflicts of dif-
ferent granularity. However, as shown in Table 5, due to the insensitivity of flow information and
imbalanced distribution of vulnerable statements, fine-grained localization performance is still not
satisfactory, which has a high MFR and MAR, i.e., 4.87 and 6.31, that is approximately 59.15% and
29.30% higher than ours.

MVD+ vs. LineVul. Despite the powerful performance of Transformer-like architecture, LineVul
performs the worst among these approaches, we infer that it is caused by the limited amount of
vulnerable samples used for training. Specifically, the total number of samples in the dataset is only
37,735 (21.63% of them are vulnerable), which makes transformer overfitting to the training data.
In addition, LineVul only considers sequence features alone while ignoring structured information
like control- and data-flows that hard to be modeled by sequence-based models.

Answer to RQ1a: MVD+ significantly outperforms five state-of-the-art function-level base-
lines in Accuracy and F1, and achieves better localization precision compared with three recent
statement-level baselines. We attribute the improvements to the crafted hierarchical represen-
tation learning strategy and fine-grained graph learning model.

5.1.2 RQ1b: Comparison with Static Analysis-based Approaches.

Performance of Vulnerable Function Identification. Table 6 shows that our model is also
more effective than other static analysis-based approaches and MVD in detecting memory-related
vulnerabilities at the function-level. Overall, MVD+ outperforms all of the baselines in every
measurement metric.
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Table 6. Evaluation Results on Function-level Vulnerability Detection in

Percentage Compared with Static Analysis-based Approaches

Metric PCA Saber Flawfinder RATS Infer MVD MVD+

Accuracy 76.57 69.12 52.31 60.14 63.84 88.52 90.11

Precision 54.82 49.05 13.86 11.09 32.97 64.19 68.53

Recall 58.03 52.44 16.97 18.25 26.72 71.35 74.86

F1-score 56.38 50.69 15.26 13.80 29.52 67.58 71.55

Table 7. Evaluation Results on Detecting Different Types of Memory-related Vulnerabilities in

Percentage Compared with Static Analysis-based Approaches

Vul Type
PCA Saber Flawfinder RATS Infer MVD MVD+

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1
BO 78.46 55.41 73.88 49.41 47.68 18.53 75.21 8.89 51.34 35.92 90.74 72.82 91.94 76.15
MemL 89.11 67.83 84.90 55.07 65.67 10.21 62.46 5.54 67.53 22.46 83.56 71.83 85.08 72.64
DF 73.75 55.23 70.11 54.92 56.86 11.05 61.34 4.05 58.17 14.24 75.62 66.42 79.13 70.04
UAF 66.59 51.95 58.31 45.86 52.83 7.31 55.31 4.19 63.87 20.59 89.44 70.91 82.66 73.08
NPD 66.04 27.52 69.34 34.87 52.76 0 63.89 0 52.29 11.36 74.25 60.97 75.99 65.82

Among the static memory detectors we chose, PCA and Saber obtain relatively better detec-
tion performance. PCA achieves the highest Precision (54.82%) and Recall (58.03%) due to its con-
sideration of global variables and precise interprocedural data flow analysis. Our approach still
improves PCA by 22.46% in terms of Precision, and by 28.02% in terms of Recall. The reason is
that static analysis-based approaches mainly rely on well-defined vulnerability rules or patterns
hand-crafted by human experts. They are effective in simple memory-related vulnerabilities (e.g.,
SARD dataset). However, real-world vulnerabilities are more complicated, restricting the effec-
tiveness of these static analysis-based detectors. Similar to these detectors, MVD+ also analyzes
interprocedural control- and data-flow information. Owing to the powerful performance of deep
learning models, MVD+ can learn implicit vulnerability patterns from vulnerable code, making it
more effective in real-world scenarios.
Performance of Vulnerability Type Prediction. We further conduct experiments to compare
the performance of different static memory detectors in detecting common memory-related vul-
nerabilities to confirm the effectiveness of our approach. The experimental results are presented
in Table 7. We can observe that MVD+ outperforms all of the static analysis-based baselines and
MVD by a significant margin in terms of Acc and F1, except that Acc of PCA is 4.74% higher than
ours in memory leak detection. However, our approach improves PCA by 7.09% in terms of F1,
which means that MVD+ can detect more true positives. In addition, we find that each approach
(including MVD+) performs worse in detecting Null Pointer Dereference (NPD) than other types
of vulnerabilities. On average, the performance of PCA, Saber, and Infer drops by 109.32%, 47.15%,
and 105.13%, respectively, in terms of F1. Particularly, Flawfinder and RATS can not detect any
true-positive NPD vulnerability. We attribute to the highly reliance on well-designed vulnerability
patterns or rules and imprecision of pure static analysis. For example, the best performed baseline
PCA uses context-insensitivity points-to analysis to compute interprocedural data-flows to trade
for scalability and efficiency. As a result, long-term data-dependence information will be missed,
making the data dependence computed by PCA suffers imprecision.

Answer to RQ1b: MVD+ produces improvements of up to 39.70% in terms of Accuracy and
195.28% in terms of F1-score on average when comparing with the state-of-the-art static vul-
nerability detectors. In addition, our approach also achieves higher performance as compared
to the baselines in detecting five common memory-related vulnerabilities.
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Table 8. Time Cost in Minutes of Different Approaches

on Training and Detecting Vulnerable Functions

Approach Training Detection Total

VulDeePecker 72.39 2.18 74.57
SySeVR 92.46 3.03 95.49
Devign 141.13 4.94 146.07
ReVeal 129.76 3.20 132.96
DeepWuKong 183.77 5.66 189.43
IVDetect 163.48 4.72 168.20
LineVD 104.85 3.74 108.59
LineVul 377.91 8.37 386.28
MVD 194.62 4.11 198.73

PCA N/A 2.58 2.58
Saber N/A 3.07 3.07
Flawfinder N/A 10.66 10.66
RATS N/A 12.09 12.09
Infer N/A 155.99 155.99

MVD+ 229.36 4.43 233.79

N/A: Not Applicable.

5.2 RQ2: Efficiency of MVD+

Table 8 lists the time cost in minutes of each approach in training and detecting vulnerable func-
tions. On average, our approach costs 229.36 min for model training and uses 4.43 min to finish
detecting memory-related vulnerabilities in the validation set.

In comparison with existing DL-based baselines, we can see that our approach spends more
time on training detection model except for the transformer-based LineVul. We attribute to the
relatively complicated data pre-processing operations, such as graph construction and program
slicing, which occupies most of the time in our approach and other graph-based baselines like
DeepWuKong. In fact, due to the characteristic that DL models can be trained off-line, their train-
ing costs may not be that important. Based on private vulnerability datasets, the users can train
their own detection models offline and make a prediction within seconds. Furthermore, among all
of the DL-based approaches, VulDeePecker incurs the least training and detection time, because it
only considers data-flows and uses a simple sequence model, BLSTM, for model training. However,
combining with the results in Table 4, we can find that it generates the lowest detection results,
because the lack of control-flows and the limitations of sequence model make it fail to capture
the structured information. By contrast, graph-based modeling of source code makes the neural
models more sensitive to vulnerability-related features, while it also increases the model complex-
ity compared with sequences. In general, we can still conclude that the time cost of our approach
is acceptable, because (1) the detection time (4.43) of MVD+ is a bit lower than the average (4.44)
of all nine DL-based baselines; and (2) our approach performs much better than the baselines on
detecting memory-related vulnerabilities as reported in RQ1.

Last, we find that more than half of (three of five) static analyzers cost more than 10 min in
detecting vulnerabilities except for PCA and Saber. We believe it is reasonable, because precise
static analyzers are heavyweight and suffer from scalable problems. To solve this limitation, PCA
speeds up data dependence computation through sacrificing partial detection precision. In spite of
its competitive detection efficiency, PCA gives a large number of false positives as our evaluation
results confirmed in RQ2.
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Table 9. Effectiveness of Interprocedural Contexts

Granularity Metric MVDIntr a MVD MVD+Intr a MVD+

Function

Accuracy 83.99 88.52 84.16 90.11

Precision 57.81 64.19 61.42 68.53

Recall 68.34 71.35 66.29 74.86

F1-score 62.63 67.58 63.76 71.55

Statement

Precision 33.75 39.44 37.64 45.03

Recall 31.44 47.19 38.52 62.48

F1-score 32.55 42.97 30.07 52.34

MCC 20.34 25.07 22.15 34.72

PR-AUC 58.41 66.74 61.08 72.39

MFR 6.99 3.94 6.13 3.06

MAR 8.81 5.52 7.48 4.88

“MVDI nt r a ” and “MVD+I nt r a ” represent the performance of MVD (or MVD+) on the

intraprocedural static analysis strategy, respectively.

Answer to RQ2: Although the training time of MVD+ is longer than most of the DL-based
baselines, our approach obtains better detection results with relatively shorter detection time,
making a trade-off between effectiveness and efficiency.

5.3 RQ3: Ablation Study

5.3.1 RQ3a: Contribution of Interprocedural Contexts. Table 9 illustrates both the function-
and statement-level vulnerability detection performance of MVD and MVD+ with their variants,
which only conduct intraprocedural analysis (MVDIntr a and MVD+Intr a ) to construct graph rep-
resentations of input programs for feature extraction. We can see that interprocedural contextual
information can indeed enrich the vulnerability-related program semantics and are beneficial
to improving the quality of extracted vulnerability features. In particular, compared with their
corresponding variants, the F1-score of MVD and MVD+ are improved by 7.9% and 12.22% on
function-level vulnerability detection, and 32.01% and 74.06% on statement-level vulnerability
detection, respectively. Furthermore, we observe that compared to the other binary classification
metrics, Recall is more sensitive to the addition of interprocedural contextual semantics, ranging
from 4.4% to 62.2%. This is likely, because interprocedural function calls (e.g., releasing a pointer
spanning multiple functions) are abused in C/C++ applications and it’s difficult for existing DL-
based code models to infer such a complex program logic, thus resulting in high false negatives.

As for two imbalance-aware metrics (MCC and PR-AUC) and two ranked metrics (MFR and
MAR), they can consistently achieve higher values with the addition of interprocedural contexts.
Specially, compared with the variant model (MVD+Intr a ), which is only trained on the intraproce-
dural contexts, the MFR of MVD+ is improved by 100.33%. MVD+ also increases the MAR by 53.28%.
In other words, with the addition of interprocedural contexts, truly vulnerable statements can be
located by MVD+ in nearly top-3 alarms, which save developers half the time for double-review
compared to the previous one.

Answer to RQ3a: The combination of intraprocedural and interprocedural analysis con-
tributes significantly to the performance of MVD+, with an F1-score improvement of 12.22%
and 74.06% on function- and statement-level vulnerability detection, respectively. The results
indicate that the addition of interprocedural contextual semantics can promote the quality of
vulnerability feature extraction and benefit the performance of vulnerability detection.
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Table 10. Evaluation Results on Different Statement Embedding Techniques

Approach Acc Pre Rec F1

Word2Vec 78.32 52.96 57.72 55.24
Doc2Vec (MVD) 79.84 54.80 58.39 56.54
Glove 81.71 56.01 58.24 57.10

TBCNN 81.29 56.88 61.32 59.01
Tree-LSTM 87.41 59.13 65.98 62.37
ASTNN 85.25 63.77 68.43 63.61

ASTNN+CodeBERT (MVD+) 89.41 66.84 72.50 69.56

5.3.2 RQ3b: Effect of Syntax-aware Statement Embedding. Table 10 presents the experimental
results of our MVD+ and the six baseline statement embedding techniques according to our four
evaluation metrics (i.e., Accuracy, Precision, Recall, and F1-score). We can observe that our state-
ment encoders with ASTNN and CodeBERT is more suitable than other embedding techniques
in memory-related vulnerability detection. Specifically, our MVD+ improves Word2Vec, Doc2Vec,
Glove, TBCNN, Tree-LSTM, and ASTNN by 14.16%, 11.99%, 9.42%, 9.99%, and 4.88%, respectively,
in terms of Accuracy, and by 25.92%, 23.03%, 21.82%, 17.88%, 11.53%, and 9.35%, respectively, in
terms of F1.

An intuitive finding is that the tree-based embedding techniques (including TBCNN, Tree-LSTM,
and ASTNN) outperform the token-based embedding techniques (i.e., Word2Vec, Doc2Vec, and
Glove) in terms of Acc and F1. We believe it is reasonable, because the syntactic information con-
tained in AST of source code makes the detection model focus on abstract structure features in-
stead of learning irrelevant lexical features. Furthermore, we can see that due to the more powerful
feature encoding ability of pre-trained CodeBERT model, MVD+ has a higher performance than
existing tree-based embedding techniques. Compared with the best performed baseline ASTNN,
which is equipped with a statement encoder initialized by Word2Vec, our approach improves the
detection performance significantly, achieving 89.41% in Accuracy and 69.57% in F1.

Answer to RQ3b: Our syntax-aware statement embedding strategy performs better as com-
pared to existing embedding techniques, we attribute to the powerful ability of pre-trained
models and tree-based neural networks in capturing lexical and syntactic information of
source code.

5.3.3 RQ3c: Impact of Flow-sensitive Graph Learning. Table 9(a) shows the results of different
graph learning models. We observe that our FS-GNN can improve the best performed baseline
RGCN by 6.89% in terms of Precision and 12.16% in terms of Recall. There are mainly two reasons
for this. On the one hand, FS-GNN adds edge types into the process of representation learning. It
can be regarded as the joint learning of edge embedding and node embedding. Thus, FS-GNN can
preserve the comprehensive program semantics based on interprocedural control- and data-flow,
improving the flow-sensitivity for memory-related vulnerabilities. On the other hand, RGCN ag-
gregates node and edge information through directed edge, while FS-GNN boosts the effect of edge
types on context by adding corresponding inverse edges. Still taking the double free vulnerability
as an example, information of memory free in different branch statements will affect their condi-
tion nodes jointly. Therefore, important features of output nodes are also preserved by FS-GNN
for node update and information propagation. In addition, we can find that although GGNN can
process multiple relations across graphs, it is still limited by the increasing number of relations,
resulting in lower performance in comparison with RGCN and FS-GNN. We can also observe that
the performance of GCN is poor. The main reason is that neglecting edge types leads to the missing
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Fig. 9. Contributions of flow-sensitive graph learning.

of structured code features (e.g., control- and data-flows). Without accurate control- and data-flow
information, the performance of memory-related vulnerability detection drops sharply.

Figure 9(b) illustrates the effect of adding resampling layer in FS-GNN’s pipeline. We can find
that node-level data re-balancing positively contributes to locating fine-grained vulnerable state-
ments. In particular, MVD+ with the resampling layer achieves 4.04%, 14.35%, and 8.07% absolute
improvement in Precision, Recall, and F1-score over the variant without re-balancing, respec-
tively. The corresponding relative improvements are 9.86%, 29.82%, and 18.23%. Furthermore, two
imbalance-aware metrics, MCC and PR-AUC, consistently achieve higher value with the addition
of the resampling layer. The results indicate that synthesized new vulnerable samples with nat-
ural semantic relation information can effectively suppress the bias towards the majority non-
vulnerable samples of trained GNN models, which facilitates the node classification performance
of MVD+ when only a small portion of statements are vulnerable.

Answer to RQ3c: Our flow-sensitive graph learning is effective in comprehensively learning
fine-grained semantic features of source code, which significantly improves the performance
of memory-related vulnerability detection, as it can better capture and distinguish structured
semantic interactions between vulnerable and non-vulnerable statements.

6 DISCUSSION

In this section, we present a case study to understand why our approach achieves better results
than others and then disclose the threats to the validity.

6.1 Case Study

This case shows a heap buffer overflow (CWE-122) vulnerability in Linux Kernel. As shown in
Figure 10, the root cause of this vulnerability is that the bounds checking in function
avcavc_ca_pmt () is not strict enough. If the variable es_info_length at line 17 is non-zero, then
it reads a sixth byte, which allows a local user of the host machine to crash the system or escalate
privileges on the system. Furthermore, the variable data_length from function fdtv_ca_pmt()
can be invalid, which will lead to shift wrapping once more than four bytes in the loop are
read.

The capability to detect this type of popular memory-related vulnerabilities involving multiple
functions is due to the way we perform interprocedural analysis to capture comprehensive
control- and data-dependencies across functions. In the process of code representation learning,
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Fig. 10. Case study: A buffer overflow vulnerability (CVE-2021-42739) in Linux Kernel. The vulnerable and

patched statements are shaded in red and green, respectively. For simplicity purpose and page limitation,

we only show the key lines of fixes.

these rich program semantics will be cooperated with code embeddings to learn vulnerability
patterns. Furthermore, benefiting from our hierarchical representation learning strategy, token-
level syntax information (e.g., numerical values) and statement-level semantic information (e.g.,
interprocedural data-flow data_length from fdtv_ca_pmt at line 22 to avc_ca_pmt at line 1) are
well preserved by our approach for information interaction at different levels. Other DL-based
baselines, such as VulDeePecker, Devign, and ReVeal, do not support interprocedural analysis
and ignore the relationships among functions, which provides a global perspective of program
semantics. By contrast, although static analyzers like PCA conduct interprocedural data depen-
dence computation to support vulnerability detection, their imprecision gives a huge number of
false positives, resulting in limited effectiveness.

6.2 Threats to Validity

Threats to external validity concern the generalizability of our experiment results. We respectively
investigated 6,879 vulnerable samples from 11 distinct C/C++ open-source projects and SARD, and
used the mixed dataset for model evaluation like prior works. However, due to the huge gap in
code complexity, detection results in practical scenarios may not be so satisfactory. Furthermore,
MVD+ is specifically designed for detecting memory-related vulnerabilities in C/C++ programs.
Thus, our experimental results may not be reproducible when applied to more complex vulnerabil-
ities or languages (e.g., Java). Nevertheless, our approach is generic and can be extended for other
vulnerabilities and languages.

Threats to internal validity relate to two factors. The first is our imperfect node labeling. In this
work, we manually labeled nodes that did not contain any “delete” statement as vulnerable through
identifying related sensitive operations. Thus, it is possible that some samples are mislabeled. To
avoid harmful influence caused by incorrect node labels, we tried our best to conduct the node
labeling for the vulnerable samples in our dataset by three experienced researchers. In addition, the
implementation of baselines also threats the results of our experiments. To compare with existing
deep learning-based vulnerability detection approaches, we have re-implemented Devign based
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on a popular repository,2 since it is closed-source. We try our best to build and tune the Devign
parameters on our dataset.

Threats to construct validity relate to the suitability of our evaluation metrics. We use only
four traditional measurements designed for classification models (i.e., Accuracy, Precision, Recall,
and F1) to evaluate the performance of function-level vulnerability detection results and use two
statement-level measurements that are preferred by previous works [36, 47]. However, other met-
rics can be used for evaluation as well. Thus, future work may conduct an observational study with
industrial practitioners to better understand how do security experts perform code inspection in
real-world practices.

7 RELATED WORKS

Existing vulnerability detection approaches can be divided into three main categories: static
analysis-based, dynamic analysis-based, and learning-based approaches.

7.1 Static Memory-related Vulnerability Detection

Static analysis-based approaches aim to detect vulnerabilities based on specific vulnerability pat-
terns or memory state model. Emamdoost et al. [26] proposed K-MELD, which combines multiple
techniques to automatically identify specialized allocation/deallocation functions and then reasons
on the ownership of the allocated memory object to infer the location of expected dealocation call,
to detect kernel memory leaks. Lyu et al. [57] presented GOSHAWK, which leverages the structure-
aware and object-centric memory operation synopsis to summarize the memory management

(MM) behaviors, and combines natural language processing and data flow analysis to identify com-
plex and custom MM functions in source code, for memory corruption bug detection. Shi et al. [71]
proposed PINPOINT to optimize widely used sparse value-flow analysis through decomposing the
cost of high-precision points-to analysis. Fan et al. [27] presented SMOKE, a staged approach that
computes a succinct set of candidate memory leak paths based on use-flow graph and leverages
a dedicated constraint solver to verify the feasibility of those candidates, to solve the scalability
problem of memory leak detection at industrial scale. Wang et al. [85] proposed MLEE, which
cross-checks the presence of memory deallocations on different early-exit paths and normal paths,
to intelligently detect memory leaks in operating system kernels. Differently, our approach learns
vulnerability patterns from large amounts of vulnerability data without requiring any prior knowl-
edge of vulnerabilities.

7.2 Dynamic Memory-related Vulnerability Detection

Dynamic detection methods run the source code and dynamically track the allocation, use and
release of memory at the run-time. DOUBLETAKE [54] split the program execution into multiple
blocks and saved the program state before each block started running. The program state would
be checked after the execution of the block ended to judge whether there was an error in memory.
Sniper [41] used the processor’s monitoring unit to track the access instructions to heap memory.
It calculated the staleness of heap objects and executed relevant instructions again to capture mem-
ory leakage during program execution. Some binary-level dynamic approaches, such as VALGRIND

[62], DR.MEMORY [8], and ADDRESSSANITIZER [70], tracked memory allocation and deallocation dur-
ing a program’s execution, and detected leaks by scanning the program’s heap for memory blocks
that no pointer points to. Recently, a number of works adopt fuzzing [11, 14] to automatically
explore different program paths and expose potential memory vulnerabilities. MEMLOCK [89] stat-
ically identified memory consumption-related statements and operations, and employed branch

2https://github.com/epicosy/devign
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coverage as well as memory consumption information to guide the fuzzing process, for memory
consumption bug detection. UAFL [83] leveraged operation sequence coverage to progressively
cover the operation sequences that are likely to trigger use-after-free vulnerabilities, and adopted
information flow analysis to identify the relationship between the input and the program vari-
ables in the conditional statement to improve the efficiency of the fuzzing process. Unlike dynamic
analysis-based approaches, our approach does not require the execution of programs.

7.3 Learning-based Vulnerability Detection

With the advance of Machine Learning (ML), especially DL, a large number of learning-based
approaches are proposed to automatically learn explicit or implicit vulnerability features from
known vulnerabilities to identify unseen vulnerabilities in projects [5, 15, 19, 49, 84]. Li et al. [50]
proposed VulDeePecker, a slice-level vulnerability detection approach that represents source code
as sequences and uses RNN (e.g., LSTM and BGRU) to learn the syntactic and semantic information
of vulnerabilities. Zhou et al. [99] proposed Devign, which combines multiple code representations
(e.g., AST, CFG, and PDG) to model vulnerability features and adopts GGNN [10] to learn rich
code semantics from structured graph representations for function-level vulnerability detection.
To pinpoint concrete vulnerability types, Zou et al. [101] proposed an attention-based multi-class
vulnerability detection approach, μVulDeePecker. They introduced code attention to accommodate
information useful for learning local features and used a building-block BiLSTM to fuse different
code features.

Despite their effectiveness, the detection granularity of these approaches are mainly at the
function- and slice-level, which is still coarse-grained. Thus, Li et at. [48] proposed VulDeeLocator,
which leverages the k-max pooling layer and the average pooling layer to narrow down the
scope of vulnerable statements. Li et al. [47] proposed IVDetect, which uses a GNN model to
predict vulnerable functions first and then leverages GNNExplainer to output the sub-graph that
contributes the most to the predictions. To further locate vulnerable statements, Fu et al. [32]
proposed LineVul, which leverages the self-attention mechanism [100] of the BERT architecture
to rank statements based on their attention scores.

The main difference between our approach and the above DL-based vulnerability detection ap-
proaches is that existing approaches mainly focus on constructing a unified representation learn-
ing model to support detection of multiple types of vulnerabilities, while our approach aims to
learn fine-grained code semantics from different types of flows (e.g., data-flows with different vari-
ables) via a novel flow-sensitive graph neural network to detect memory-related vulnerabilities at
the statement-level.

8 CONCLUSION

In this article, we propose MVD+, a novel DL-based memory-related vulnerability detection
approach, which captures comprehensive program semantics to support suspicious statement
localization. By the hierarchical representation learning strategy, which performs a syntax-aware
neural embedding within statements and captures structured context information across state-
ments based on a novel Flow-Sensitive Graph Neural Networks (FS-GNN), to learn both the
syntactic and semantic features of vulnerable code, MVD+ outperforms current state-of-the-art
DL-based approaches as well as well-known static analyzers with 9.47–22.46% higher Precision
and 12.64–28.02% Recall on our constructed dataset for memory-related vulnerabilities.
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