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Abstract—As with anything connected to the internet,
industrial Internet of Things (IIoT) devices are also subject
to severe cybersecurity threats because an adversary could
exploit vulnerabilities in their internal software to perform
malicious attacks. Despite the promising results of deep
learning-based approaches, most solutions can only detect
the presence of a vulnerability but fail to pinpoint its cor-
responding type. Recently, TreeVul formalizes the task as
a hierarchical multilabel classification problem to predict
complete coarse-to-fine vulnerability type hierarchy. Yet,
the TreeVul approach is still inaccurate and neglects sam-
ples labeled at coarse categories. In this article, we propose
HIERVUL, a novel hierarchy-aware representation learning
approach for IIoT vulnerability classification. Specifically, to
make full use of vulnerable samples labeled at any granu-
larity, HIERVUL constructs hierarchy-specific extractors as
well as classifiers to disentangle level-wise vulnerability
features from the code representation learning network
backbone, and maximizes their marginal probability in the
probability space constrained by the Common Weakness
Enumeration tree hierarchy. Furthermore, considering that
the distinction between two vulnerability types at the same
level of abstraction becomes smaller and smaller as the
refinement of classification granularity, HIERVUL leverages
residual connections to add parent-level coarser-grained
features to child-level finer-grained features to transfer hier-
archical knowledge across levels. The experimental results
show that HIERVUL achieves 15.25%, 45.16%, and 14.52%
relative improvement over TreeVul on Weight F1, Macro F1,
and PF, respectively, indicating the effectiveness of HIERVUL
in the practical scenario.

Index Terms—Deep learning (DL), hierarchical multilabel
classification (HMC), industrial Internet of Things (IIoT), vul-
nerability type.
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I. INTRODUCTION

INDUSTRIAL Internet of Things (IIoT) systems are improv-
ing service delivery and increasing productivity across a

broad range of industries from simple applications on hand-held
devices to complicated embedded systems [1]. In the mean-
while, as with anything connected to the internet, IIoT devices
are also subject to security risks. One of the most prevalent
attack vectors is vulnerabilities within the software deployed on
IIoT devices.1 These potential software vulnerabilities can be
exploited by attackers to gain unauthorized access, manipulate
device functionality, or inject malicious code into the system.
What’s worse, given that most IIoT devices are designed for
decades of use, the older the device, the more likely it is to present
a security risk as it lags in vulnerability awareness and fixing.
For example, the Finite State2 described a Huawei-manufactured
device that included code using a version of OpenSSL that
was released in 2003 and well known (and documented) as
extremely vulnerable. Hence, automated detection of software
vulnerabilities on IIoT devices has drawn increasing attention
in recent years [2].

Conventional approaches primarily employ static analysis
techniques or hand-crafted specifications to identify poten-
tial vulnerabilities. Recently, benefiting from the great success
of deep learning (DL) in program comprehension, a num-
ber of learning-based approaches [3], [4], [5], [6], [7] have
been proposed to leverage complex neural network models
to learn automatically implicit patterns from prior vulnerable
code instead of requiring expert involvement. They convert
code snippets into abstract representations containing rich syn-
tactic and semantic information, and employ off-the-shelf DL
models to extract high-dimensional feature representations for
classification.

While demonstrated superior performance, almost all of the
DL-based approaches regard vulnerability detection as a bi-
nary classification task, i.e., determining whether the given
source code contains vulnerabilities, but fail to point out fine-
grained vulnerability types. As a matter of fact, pinpointing
the vulnerability type is useful in reducing the workload of
developers for vulnerability analysis, localization, and fixing
to a certain extent. A straightforward way is to train a mul-
ticlass classifier based on well-labeled vulnerable samples, as
μVulDeePecker [8] does. However, such a flat solution ignores

1[Online]. Available: https://www.linkedin.com/pulse/industrial-iot-iiot-
attacks-digialert

2[Online]. Available: https://finitestate.io/
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the strong correlation among vulnerability types at different
levels of abstraction, and suffers from the severe class imbalance
issue in practice. As reported in [9], 70% of vulnerabilities fall
into 20% of types, and the top three types account for nearly
50% of vulnerabilities averagely. Such a long-tailed distribution
hinders the learning process of deep learning-based models,
where models could learn too well on the head vulnerability
types while performing poorly on the tails. To alleviate this
problem, TreeVul [10] formulated the task as a hierarchical
multilabel classification (HMC) problem to infer a sequence of
coarse-to-fine vulnerability types based on the Common Weak-
ness Enumeration (CWE) tree structure information. However,
conventional HMC solutions may not be applicable in vulner-
ability classification scenarios because manual collection and
annotation of such datasets with complete hierarchical labels
from the coarsest to the finest granularity (i.e., ground truth)
are expensive and hard to scale. In practice, due to the un-
even domain knowledge or limited vulnerability information,
vulnerabilities are often labeled at different depths of the CWE
tree structure. For example, according to the statistics [10], a
large number of vulnerable samples are classified at a coarse-
grained level (21%). As a result, examples labeled at coarse
categories are often neglected, further exacerbating the scarcity
of data available for training IIoT vulnerability classification
model.

In this article, we propose HIERVUL, a novel Hierarchy-aware
representation learning-based approach to classify detected IIoT
Vulnerabilities into multigranularity CWE types. The key in-
sight underlying our proposed approach is that learning with vul-
nerable samples labeled at different levels of abstraction should
transfer hierarchical knowledge across levels. Specifically, to
make full use of vulnerable samples labeled at any granularity,
HIERVUL constructs hierarchy-specific extractors as well as clas-
sifiers to disentangle level-wise vulnerability features from the
code representation learning network backbone, and maximizes
their marginal probability in the probability space constrained
by the CWE tree hierarchy. The benefits of such marginaliza-
tion are that, coarse-grained vulnerability features could im-
pact decisions of fine-grained classifiers, while finer-grained
label learning enhances the discriminability of coarser-grained
classifiers. Furthermore, to reflect the feature interaction within
the inherent coarse-fine hierarchical relationship among CWE
vulnerability categories, HIERVUL leverages residual connec-
tions to add parent-level coarser-grained features to child-level
finer-grained features to transfer hierarchical knowledge across
levels.

To evaluate the effectiveness of our proposed HIERVUL,
we conduct experiments on a popular real-world benchmark,
Big-Vul [11], which consists of 8,783 C/C++ (a dominant
language for implementing IIoT operating systems and em-
bedded software that widely used as targets for vulnerability
discovery [12] and analysis [13], [14]) vulnerable functions with
CWE information. The experimental results show that HIERVUL

outperforms all baselines with a substantial improvement (i.e.,
54.55%–209.10% in terms of Weighted F1, 55.17%–221.43%
in terms of Macro F1, and 51.06%–208.70% in terms of PF),
indicating the effectiveness of HIERVUL in practical scenarios.

Fig. 1. Taxonomic hierarchy of the CWE tree.

In summary, this article makes the following contributions.
1) To the best of our knowledge, we are the first to promote

multi-granularity IIoT vulnerability classification prob-
lem to a more practical scenario, in which samples are
labeled at any level of the hierarchy.

2) We propose HIERVUL, a novel DL-based IIoT vulner-
ability type prediction approach, which classifies de-
tected vulnerabilities into fine-grained CWE categories
via hierarchy-aware representation learning. HIERVUL

combines level-wise vulnerability feature disentangle-
ment and residual connection to make full use of vul-
nerable samples labeled at any granularity.

3) Extensive experimental results show substantial improve-
ments HIERVUL brings to IIoT vulnerability classification
compared to state-of-the-art baselines.

The rest of this article is organized as follows. Section II
introduces the background knowledge related to our proposed
framework. Section III describes the details of our approach.
Section IV presents the experimental setup and results. Section V
discusses the possible threats to validity. Section VI reviews the
related work. Finally, Section VII concludes this article.

II. BACKGROUND

In this section, we briefly introduce the basic concept of CWE
and HMC.

A. Common Weakness Enumeration

CWE3 provides a list of common software and hardware
weakness types developed and maintained by security commu-
nity. As shown in Fig. 1, vulnerability types are organized as a hi-
erarchical tree structure of multiple levels of abstraction in CWE.
Early CWE taxonomy mainly focus on software vulnerabilities,
such as View-699 (Software Development), which organizes
vulnerabilities around concepts that are frequently used or en-
countered in software development. Considering that hardware
security issues are becoming increasingly important concerns
for both enterprise IT, OT, and IoT in general, ranging from
industrial control systems and medical devices to automobiles
and wearable technologies, taxonomy for hardware vulnerabili-
ties, i.e., View-1194 (Hardware Design), are supported by CWE
since 2020.

3[Online]. Available: https://cwe.mitre.org/index.html
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Fig. 2. Overall architecture of our proposed HIERVUL approach.

B. Hierarchical Multilabel Classification

HMC aims to predict the category of a given input (e.g., vul-
nerable function) in a predefined taxonomic hierarchy (e.g., tree
or directed acyclic graph) from top (coarser-granularity) to down
(finer-granularity). Concretely, suppose a code snippet c which
is detected as vulnerable, we have a chain ofY = {y1, . . . , yK},
yk ∈ {yk1 , . . . , ykm} labels defined across different granularities,
where m refers to the number of vulnerability types at depth-k.

Traditional HMC approach often leverages complete hier-
archical labels from the coarsest to the finest granularity to
constructK independent classifiersG(·) for prediction, i.e., Ȳ =
{ȳ1, . . . , ȳK}, where ȳk = Gk(F(c)). F(·) is an input-specific
network backbone used for feature extraction. However, due to
the lack of domain knowledge, vulnerabilities may be labeled
at any level of the hierarchy. For example, LibTIFF,4 an open-
source Tag Image File Format (TIFF) processing library that is
widely deployed on IIoT devices such as autonomous vehicles,
has been exposed to have a heap buffer overflow vulnerability
(CVE-2016-95355) in release mode. According to the CWE tax-
onomy, it should have been labeled as CWE-120 (Classic Buffer
Overflow), while it was labeled at its parent-level, i.e., CWE-119
(Improper Restriction of Operations within the Bounds of a
Memory Buffer), by National Vulnerability Database (NVD6),
as shown in Fig. 1. Therefore, a more practical HMC model
should be able to leverage vulnerable samples labeled at various
levels of the CWE tree hierarchy.

III. OUR APPROACH: HIERVUL

In this section, we present the details of our novel IIoT
vulnerability type prediction approach that classifies detected
vulnerabilities into hierarchical CWE vulnerability types.

A. Overview

Fig. 2 shows the overall architecture of our proposed HI-
ERVUL approach, which consists of three main components:

4[Online]. Available: http://www.libtiff.org/
5[Online]. Available: https://nvd.nist.gov/vuln/detail/CVE-2016-9535
6[Online]. Available: https://nvd.nist.gov/

1) feature encoder (Section III-B); 2) hierarchy-specific fea-
ture extractor (Section III-C); and 3) classifier (Section III-D).
Specifically, given a detected vulnerable code snippet, the fea-
ture encoder transforms it into a numerical code property graph
(CPG) [15] containing rich syntactic and semantic information
of vulnerabilities through static analysis and program embed-
ding, and leverages an attention-based Graph Neural Network
(GAT) to iteratively update the feature embedding of each node
in CPG. Then, the hierarchy-specific feature extractors are a
set of CNN modules sharing the same structure and used for ex-
tract granularity-specific vulnerability features. Coarser-grained
global features will be linearly added to the finer-grained local
features via residual connections for information interaction
across levels. Finally, to make full use of samples labeled at any
level of the CWE tree hierarchy, the classifier integrates both
hierarchical loss and categorical cross-entropy loss to transfer
hierarchical knowledge to train the best performed classification
model.

B. Feature Encoder

1) Graph Construction: Previous studies [4], [6], [7] have
shown that combining diverse dimensional code representations
is beneficial for DL models to capture the unique features
of different types of vulnerabilities. To this end, we conduct
intraprocedural program analysis to build CPG, a joint code
graph representation which consists of AST, CFG, and data flow
graph (DFG). AST organizes source code as a tree to reflect
its syntax structure, while CFG and DFG provide the control-
and data-flow information between statements. These structured
code representations preserve rich syntactic and semantic infor-
mation of programs beneficial to feature representation learning.

2) Code Embedding: After graph construction, we convert
the code tokens of each CPG’s node into low-dimensional vector
representation for subsequent graph representation learning.
Specifically, we apply CodeBERT [16], one of the most popular
code-oriented language model that pretrained on 2.1 M bimodal
comment-function pairs and 6.4 M unimodal functions across
six programming languages, to capture the lexical information
of vulnerable code. Code tokens (i.e., leaf nodes of ASTs)
will be split and merged into meaningful subwords through
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the BPE algorithm, and embedded into the fixed-size vector
representations. The use of BPE subword tokenization will help
reduce the vocabulary size, alleviating the problem of Out-Of-
Vocabulary in code embedding. In addition, we also consider
the abstract type of each node (e.g., Identifier, Variable) since
it reflects the code property represented by each node, making
the vulnerability patterns more general. We encode the abstract
type of each node by one-hot encoding, which transforms text
into numerical value. Finally, the textual code representation
Ci is concatenated with the type representation Ti as the initial
representation of each node i as follows:

h
(0)
i = Ci||Ti (1)

where || denotes the concatenation operator.
3) Graph Representation Learning: To integrate the struc-

tured semantic information of vulnerable code into the embed-
dings of CPG nodes, we improve the attention-based graph
neural network (hereafter GAT) to iteratively propagate and
aggregate node information along with different edges (i.e.,
AST, CFG, and DFG edges). Formally, given a CPG node i,
its node representation after tth iteration is updated as

h
(t+1)
i =

1
|R|

∑
r∈R

⎛⎝σ
⎛⎝∑

j∈Nr

α
(t)
i,jz

(t)
j

⎞⎠⎞⎠ (2)

z
(t)
j = W (t)

r h
(t)
j (3)

where R is the types of edges in CPG, and | · | represents the
size of a set. σ denotes the activation function, which we use
LeakyReLU here.Nr represents the one-hop neighbors of node
i under the edge r. W r represents the weight matrix under the
edge r. αi,j represents the attention weight between the node i
and its neighbor j under the edge r

α
(t)
i,j =

exp(e
(t)
i,j )∑

q∈Nr
exp(e

(t)
i,q)

(4)

e
(t)
i,j = σ

(
�ar

(t)T
(
z
(t)
i ||z(t)

j

))
(5)

where �ar
T denotes the transposition of a learnable weight vector.

|| denotes the concatenation operation. ei,j can be regarded as
the association degree between node i and its neighbor node j.

C. Hierarchy-Specific Feature Extractor

To capture important vulnerability features that are relevant to
vulnerability types at a specific level of the CWE tree hierarchy,
we construct K independent feature extractors F(·). These
feature extractors share the same structure that comprises d 1-D
convolution layers with maxpooling

X(d) = F(X(d−1)) (6)

F(·) =MAX(ReLU(CONV (·))) (7)

whereX(0) = [h(T )
n1
,h(T )

n2
, . . . ,h(T )

nV
] is the node representation

matrix of CPG afterT th iteration. The number of the convolution
layer with maxpooling d is set to 2. Z = X(d) denotes the final

node representation matrix which delineate important features
specific to each hierarchy.

In addition, to reflect the hierarchical feature interaction,
i.e., allowing coarser-grained features in jointly predicting a
finer-grained label, we adopt residual connections to linearly
add parent-level features to child-level features as follows:

Z′
k = Zk +Zk−1 (8)

where Zk represents the vulnerability features specific to CWE
categories at depth-k (k ∈ {1, . . . ,K}) of the tree hierarchy.

Having obtained the final vulnerability features, we use a
multilayer perceptron (MLP) with an average pooling layer to
project the vulnerability features Z′ specific to each level of the
CWE tree into a latent space and aggregate them as a neural
code representation x of the input code snippet c by

xc = AV G(MLP (Z′)). (9)

D. Classifier

Given the hierarchy-specific neural code representation, we
apply a classification layer to convert the predictive score into the
probability distribution over multiple CWE vulnerability types.
In particular, we set up two parallel output channels to compute
the Hierarchy Loss (LHier) and Categorical Cross-Entropy Loss
(LCE) for model optimization. LHier aims to classify each code
snippet c into multigranularity labels which comply with the
hierarchical constraints of the CWE tree, while LCE focuses on
maximizing the separation between finest-grained types.

1) Hierarchy Loss: To effectively utilize vulnerable samples
labeled at different levels of the CWE tree, we maximize the
marginal probability of a labeled vulnerable sample in the
probability space constrained by the CWE tree to calculate
the hierarchy loss. The benefits of such marginalization is that
coarse-grained vulnerability features can impact decisions of
fine-grained classifiers, while finer-grained label learning en-
hances the discriminability of coarser-grained classifiers.

Specifically, given an input vulnerable code c, the joint prob-
ability of its hierarchical label y is computed as

P̃ (y|c) =
n∏

a=1

φa(c̄a, ya)
∏

a,b∈{1,...,n}
ψa,b(ya, yb) (10)

where y ∈ {0, 1}n is a binary vector which represents the as-
signment of all labels in the hierarchy.n denotes the total number
of vulnerability types in the CWE tree. c̄a = sigmoid(xc) is
the probabilistic output of type a, and φa(c̄a, ya) = ec̄a[ya=1].
ψa,b(ya, yb) is the hierarchical constraint between any two labels
in y, which equals to 1 when ya is the parent-level label of yb,
and vice versa. In other words, ya and yb should be vertically-
correlated (reflecting the dependencies of vulnerability types
at different levels of abstraction), and horizontally-exclusive
(capturing the slight distinction between labels at the same
hierarchy).

Then, if the input vulnerable code c is labeled at the ath label
(i.e., ya = 1) in the CWE tree hierarchy, the marginal probability
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Pr(ya = 1|c) of label a is calculated by

Pr(ya = 1|c) = 1
Z(c)

∑
ȳ:ȳa=1

∏
a

φa(c̄a, ȳa)
∏
a,b

ψa,b(ȳa, ȳb)

(11)
where Z(c) is the partition function that sums over all legal
assignments ȳ.

With the hierarchy loss function, HIERVUL optimizes the
classifier by maximizing the marginal likelihood of m training
data D = {c(l), y(l), g(l)} that labeled at any level (i.e., ground
truth) of the CWE tree hierarchy as follows:

LHier(D) = − 1
m

m∑
l

ln(Pr(y
(l)

g(l) = 1|c(l))) (12)

where l = {1, . . . ,m} denotes the index of the training data. y(l)

is the complete label vector and g(l) ∈ {1, . . . , n} is the index
of the label.

2) Categorical Cross-Entropy Loss: In addition, considering
that the distinction between child-level labels belonging to the
same parent becomes smaller with the refinement of classifica-
tion granularity, which may seriously confuses the classifier, we
also add Categorical Cross-Entropy Loss (LCE) to further im-
prove the discriminative capability for the finest-grained CWE
types.

Finally, the total loss used to train HIERVUL is defined as

Ltotal(D) =
∑
l

Lcom(c
(l), y

(l)

g(l)) (13)

where Lcom is the combinatorial loss

Lcom =

{
LHier +LCE, if g(l) ∈ g′

LHier, otherwise
(14)

where g′ ∈ {u, . . . , n} is a set of finest-grained labels in the last
level of the CWE tree.

IV. EXPERIMENTAL EVALUATION

In this section, we first introduce our research questions,
dataset, baselines, evaluation metrics, and implementation de-
tails. Then, we show results for each research question.

A. Research Questions

In this article, we aim to answer the following research
questions (RQs).

1) RQ1: How effective is HIERVUL in vulnerability classifi-
cation as compared to state-of-the-art approaches?

2) RQ2: How does hierarchy-aware representation learning
contribute to the overall performance of HIERVUL?

3) RQ3: Can HIERVUL be applied to vulnerability classifi-
cation in real-world IIoT products?

B. Dataset

Given that IIoT-specific vulnerability samples with source
code are either insufficient for training DL models [14] or lack
of available vulnerability types (i.e., ground truth) [17], we
employ Big-Vul [11], a large-scale C/C++ vulnerability dataset

composed of vulnerable/benign code snippets crawled from 348
open-source GitHub projects, for our experiments. The evalua-
tion on the Big-Vul dataset is reliable because: 1) a considerable
portion of IIoT vulnerabilities are software vulnerabilities that
introduced into the IIoT devices along with the integration of
open-source software [18]; and 2) C/C++ is a dominant language
for implementing IIoT operating systems and embedded soft-
ware that widely used as targets for vulnerability discovery [12]
and analysis [13].

Big-Vul adopts Common Weakness Enumeration IDentifiers
(CWE-ID) as vulnerability classification standard to label vul-
nerable functions. In particular, these CWE-IDs are mapped to
a vulnerability type tree based on a shallow two-level category
view (View-10037). Such a taxonomic hierarchy organizes vul-
nerability types according to the concepts commonly used or
encountered in software development and are independent of any
specific language or technology. While we evaluate HIERVUL on
a simplified CWE tree with two layers, other views can also be
done to support more complex IIoT vulnerability classification
tasks. However, such taxonomy is beyond the scope of this
research and we leave that for future research. In the released
version of Big-Vul, there are 3754 vulnerabilities (including
11 823 vulnerable functions) spanning 91 different vulnerability
types. In our experiments, we only retain vulnerable functions
with CWE-IDs for model training and testing. As a result,
we obtain a total of 8783 well-labeled vulnerable functions
with 88 different kinds of CWE-IDs. Table I summarizes the
descriptive statistics of our cleaned dataset. “Type-k” denotes the
vulnerability type at depth-k of the CWE tree. “# Func” means
the number of vulnerable functions in the dataset. Vulnerability
families (depth-2 vulnerability types and their corresponding
depth-1 parent types) types with a sample size of less than
30 (e.g., CWE-665 and its subtypes CWE-{1188,908,909})
or not mapped to the View-1003 are group together as
“CWE-Other.”

C. Baselines

To demonstrate the effectiveness of HIERVUL, we adopt the
following two state-of-the-art DL-based vulnerability classi-
fiers [8], [10] as our baselines.

1) μVulDeePecker [8] defines a set of type-specific syntax
rules to extract code attention from code gadget (a group
of statements which are control- or data-dependent on the
actual vulnerable statements), and proposes an attention-
based building-block BLSTM to fuse different levels of
vulnerability features for type prediction.

2) TreeVul [10] proposes a hierarchical and chained classi-
fication model which leverages the hierarchy information
of CWE tree-like taxonomy as prior knowledge to learn
multilevel vulnerability features, and searches for the
optimal label sequence based on a top-down inference
algorithm. Given that TreeVul is designed for security
commits, we directly feed the whole function (instead

7[Online]. Available: https://cwe.mitre.org/data/definitions/1003.html
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TABLE I
DESCRIPTIVE STATISTICS OF OUR CLEANED DATASET

of code changes) like previous Transformer-based ap-
proaches [19] into CodeBERT to support function-level
vulnerability classification.

In addition, we also compare HIERVUL with the following
four popular DL-based binary vulnerability detectors, including
two sequence-based approaches [3], [5] and two graph-based
approaches [4], [6].

1) VulDeePecker [3] extracts program slices based on data-
flows between statements and leverages BLSTM to de-
tect buffer error vulnerabilities (CWE-119) and resource
management error vulnerabilities (CWE-399).

2) SySeVR [5] improves VulDeePecker by performing for-
ward and backward program slicing on PDG to ex-
tract control- and data-flow-related code snippets as fea-
tures and adopts several RNN-based models for training
(BLSTM, BGRU, GRU, etc.).

3) Devign [4] combines multiple code representations (e.g.,
AST, CFG, and DDG) to model programs at the function-
level, and adopts GGNN to learn implicit vulnerability
semantics for classification.

4) ReVeal [6] proposes to leverage CPG and GGNN to
automatically learn the graph properties of source code.

These baselines have been widely evaluated on the Big-Vul
dataset by previous works [19], [20]. Their detailed comparison
is shown in Table II. In addition, considering that the above
four DL-based binary vulnerability detectors are not designed
for multiclass classification scenarios, we make the minimal
modifications to them by replacing the binary cross-entropy
(CE) loss with categorical CE loss, and employs a softmax
layer for multiclass prediction. For fair comparison, we retrain
the four modified baselines on the Big-Vul dataset to focus on
vulnerability classification.

D. Evaluation Metrics

Referring to previous works [8], [10], we used the following
evaluation metrics to measure the performance of classifying
detected vulnerabilities into different CWE categories.

1) Macro F1 is the harmonic mean of Macro Recall
(M_R) and Macro Precision (M_P), which reflects the
global performance of the classifier over all vulnerability
types. It is calculated as: Macro F1 = 2 ∗ M_R∗M_P

M_R+M_P ,

where M_R = 1
L

∑L
l=1 Recalll =

1
L

∑L
l=1

TPl

TPl+FNl
,

and M_P = 1
L

∑L
l=1 Precisionl =

1
L

∑L
l=1

TPl

TPl+FPl
.

L indicates the total number of vulnerability types. TPl,
FPl, and FNl are the numbers of true positives, false
positives, and false negatives for class l. The higher
(ranging from 0 to 1) the Macro F1 is, the better the
classifier is at multiclass classification.

2) Weighted F1 represents the average F1-score of all classes
weighted by the proportion of the number of each vulner-
ability class in the total number of vulnerabilities. It is de-
fined as: Weighted F1 =

∑L
l=1 Wl ∗ 2∗Recalll∗Precisionl

Recalll+Precisionl
,

whereWl =
|Xl|∑L
l=1 |Xl| is the weight factor of each vulner-

ability class. |Xl| indicates the total number of samples
for vulnerability type l. | · | denotes the size of a set.

3) Path Fraction(PF) measures the degree of overlap be-
tween the predicted label sequence and the observed
CWE type. It is defined as: PF = 1

N

∑N
j=1 |l̃j ∩ lj |/|lj |,

where N =
∑L

l=1 |Xl| is the total number of samples in
the dataset. l̃j represents the predicted hierarchical label
sequence of CWE categories, while lj is the ground truth
label.

These metrics are commonly used in the literature regarding
vulnerability classification [8], [10], and suitable for our data
where the vulnerability distribution is highly imbalanced [21].

E. Implementation Details

Our experiments were performed on a computer with an
Nvidia Graphics Tesla T4 GPU, installed with Ubuntu 18.04,
CUDA 10.1. The cleaned dataset was randomly split into the ra-
tio of 8:1:1 for training, validation, and testing. We implemented
our approach in Python using PyTorch.8 We extracted CFGs
and PDGs of the code snippets based on the ASTs parsed by
tree-sitter9 to construct CPG. The dimension of the vector

8[Online]. Available: https://pytorch.org/
9[Online]. Available: https://tree-sitter.github.io/tree-sitter/
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TABLE II
DETAILS OF DL-BASED VULNERABILITY CLASSIFICATION BASELINES

Fig. 3. Performance of vulnerability classification regarding HIERVUL and baselines.

representation of each node/token in CPG is set to 128 and the
dropout is set to 0.1. GGNN is trained in a batch-wise fashion
until converging and the batch size is set to 64. ADAM [22]
optimization algorithm is used to train the model with the
learning rate of 1e-4. Weight decay is set to 5e-1. The other
hyperparameters of our approach are tuned through grid search.

F. Effectiveness (RQ1)

To answer RQ1, we compare HIERVUL with two multiclass
vulnerability classifiers and four modified DL-based vulnera-
bility detectors on the Big-Vul dataset. Fig. 3 shows the perfor-
mance comparison of HIERVUL with respect to six baselines
in terms of the aforementioned evaluation metrics. Overall,
HIERVUL generally outperforms all of the baselines, achieving
0.68 on Weighted F1, 0.45 on Macro F1, and 0.71 on PF.

Compared with DL-based approaches (i.e., μVulDeePecker,
VulDeePecker, SySeVR, Devign, and ReVeal) which directly
regard vulnerability type prediction as a multiclass classifica-
tion problem, we can find that the average improvements of
HIERVUL over each metric are significant, ranging from 54.55%
to 209.10% on Weighted F1, from 55.17% to 221.43% on
Macro F1, and from 51.06% to 208.70% on PF, respectively.
These results verify the effectiveness of hierarchical classifica-
tion strategy in predicting vulnerability types which are orga-
nized as a multilevel tree structure in CWE. The root cause

for this performance gap is that such a flat solution ignores
the strong correlation among vulnerability types at different
levels of abstraction, and suffers from the severe class imbalance
issue in practice. As a result, vulnerability types with similar
features confuse the classifier seriously. By contrast, benefiting
from the inherent coarse-fine hierarchical relationship among
CWE vulnerability categories, HIERVUL can transfer hierar-
chical knowledge across levels and improve the discriminative
capability among similar vulnerability types. In addition, HI-
ERVUL also outperforms the most related baseline TreeVul on
all metrics. In particular, HIERVUL achieves 15.25%, 45.16%,
and 14.52% relative improvement on Weight F1, Macro F1,
and PF, respectively. The key reason for HIERVUL to predict
vulnerability types more correctly than TreeVul is that our
hierarchy-aware representation learning can make full use of
vulnerable samples labeled at any granularity by combining
the hierarchy loss with categorical cross-entropy loss. On the
contrary, TreeVul requires complete hierarchical labels from the
coarsest to the finest granularity to construct multiple hierarchy-
specific classifiers, further exacerbating the scarcity of data
available for model training and overlooking samples labeled as
coarse categories. As shown in Fig. 4, TreeVul behaves poorly
on some fine-grained vulnerability types, such as CWE-129
and CWE-700, while our proposed approach achieves better
performance on both coarse- and fine-grained vulnerability
types.
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Fig. 4. Confusion matrices of TreeVul and HIERVUL at different levels of the CWE tree. (a) Depth-1 (TreeVul); (b) Depth-1 (HIERVUL); (c) Depth-2
(TreeVul); (d) Depth-2 (HIERVUL).

G. Ablation Study (RQ2)

To answer this RQ, we build three variants (LCE, LHier, and
LHier + LCE) of HIERVUL by removing each key element of
our hierarchy-aware representation learning, including residual
connections (RC) and combinatorial loss (Lcom), from the model
one by one.

As shown in Table III, both residual connections and combi-
natorial loss significantly improve the performance of HIERVUL

on each evaluation metric, indicating that our hierarchy-aware
representation learning can promote the discriminative feature
extraction and benefits the performance of vulnerability clas-
sification. Furthermore, we can find that compared to residual
connections, the positive gains of introducing hierarchy loss are

TABLE III
IMPACT OF TWO KEY DESIGNS OF OUR PROPOSED HIERARCHY-AWARE

REPRESENTATION LEARNING

major. In particular, the Weighted F1, Macro F1, and PF are
improved by 38.30%, 53.57%, and 31.37%, respectively. Such
a significant improvement is foreseeable because the inherent
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TABLE IV
VULNERABILITIES CLASSIFICATION PERFORMANCE OF TREEVUL AND

HIERVUL IN REAL-WORLD IIOT PRODUCTS

coarse-fine hierarchical relationship among CWE vulnerability
categories is ignored. As a result, the classifier struggles to dis-
tinguish a vulnerability type from its parent-level or child-level
types sharing the similar features. In addition, the combinatorial
loss consistently outperforms single LHier by adding LCE im-
posed on the finest-grained vulnerability types, demonstrating
the effectiveness of combining the probabilistic classification
loss (LHier) with the categorical cross-entropy loss (LCE).

H. Practicability (RQ3)

To answer this RQ, we perform a case study to investigate
the practicability of HIERVUL on real-world IIoT vulnerability
classification. We select two software, LibTIFF and VLC, as
our targets because both of them are widely deployed in IIoT
environments, such as smart healthcare [23] and grid [24],
and open-sourced. We manually identify vulnerable code of
these projects from NVD and filter out entries without explicit
CWE-IDs. In total, we collect 37 vulnerabilities with CWE type
information.

Table IV presents the effectiveness of the best-performing
baseline TreeVul and HIERVUL in classifying real-world IIoT
vulnerabilities. As seen, HIERVUL correctly classifies 26 of

37 (i.e., 0.70 in terms of Accuracy, 0.41 in terms of Macro
Precision, and 0.46 in terms of Macro Recall) vulnerabilities
as their corresponding CWE types, while TreeVul can only
successfully classify 17 vulnerabilities (i.e., 0.46 in terms of
Accuracy, 0.26 in terms of Macro Precision, and 0.34 in terms
of Macro Recall). In addition, 13 of 26 vulnerabilities correctly
classified by HIERVUL are missed by TreeVul. By contrast,
HIERVUL only mislabels four vulnerabilities that can be found
by TreeVul. Such results demonstrate the capability of HIERVUL

in real-world IIoT vulnerability classification.

V. THREATS TO VALIDITY

Threats to Internal Validity come from the quality of our
used Big-Vul dataset. The Big-Vul dataset gathers the type label
(i.e., CWE-ID) of each vulnerable sample from the public CVE
database. However, the vulnerability types provided by CVE
have reported to exhibit quality issues such as erroneous and
imprecise [9]. To reduce the likelihood of experiment biases, we
employ two security experts with at least five years of experience
in software security to manually confirm the correctness of
vulnerability types.

Threats to External Validity refer to the generalizability of
our approach. We only conduct our experiments on C/C++
projects, and thus our experimental results may not generalizable
to IIoT projects developed by other programming languages
such as Java and Python. To mitigate the threat, we employ
tree-sitter, which supports a wide range of languages, to
implement HIERVUL and baselines.

VI. RELATED WORK

The related prior works can be classified into two categories:
1) vulnerability detection; and 2) vulnerability classification.

A. Vulnerability Detection

The major breakthroughs in DL models along with the ever-
increasing public datasets has opened up new opportunities
to develop effective vulnerability detection techniques. Prior
works [3], [5] focus on representing source code as sequences
and use LSTM-like models to learn the syntactic and seman-
tic information of vulnerabilities. Recently, a large number of
works [4], [6], [20], [25], [26] turn to leveraging GNNs to extract
rich and well-defined semantics of the program structure from
graph representations for downstream vulnerability detection
tasks. AMPLE [20] simplified the code graphs to alleviate the
long-term dependency problems and fused local and global
heterogeneous node relations for better representation learning.

Instead of exploring the best-performing DL models, we
focus on classifying the detected vulnerabilities into fine-grained
CWE types to facilitate vulnerability understanding and analy-
sis. Thus, existing DL-based vulnerability detection approaches
are orthogonal to our work.

B. Vulnerability Classification

Vulnerability classification is the first and a crucial step in
vulnerability analysis and repair. Prior works [27], [28] focus
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on constructing classifiers based on experts-curated vulnera-
bility descriptions. Wang et al. [29] generated weighted word
embeddings according to the category distribution, and fused the
local and global features of vulnerability descriptions extracted
by the TCNN-BiGRU model. Although text-based classification
models have achieved relatively promising results, high-quality
vulnerability descriptions are often hard to obtain in early vul-
nerability sensing. Thus, recent efforts [8], [10], [30] try to
perform vulnerability classification after receiving an alert of a
vulnerable code. Zhou et al. [30] proposed CoLeFunDa, a con-
trastive learning-based pretraining framework, which identifies
silent vulnerability fixes and further provides OSS users with
the CWE category and the exploitability rating information for
explanation.

Different from the existing studies targeting at flat multiclass
vulnerability type prediction, we leverage the CWE tree struc-
ture to perform hierarchical classification in which different
vulnerabilities can be labeled at various levels of the label
hierarchy due to the differences in domain knowledge.

VII. CONCLUSION

In this article, we proposed HIERVUL, a novel hierarchy-
aware representation learning approach for IIoT vulnerability
classification. The key insight of HIERVUL was that coarse-
grained vulnerability features could impact decisions of fine-
grained classifiers, while finer-grained label learning enhances
the discriminability of coarser-grained classifiers. Based on
this intuition, HIERVUL disentangled level-wise vulnerabil-
ity features and maximized the marginal probability in the
probability space constrained by the CWE tree hierarchy to
make full use of vulnerable samples labeled at any gran-
ularity. The experimental results showed that HIERVUL sig-
nificantly outperforms the state-of-the-art baselines in terms
of all metrics. In the near future, we plan to generalize
our approach to more programming languages like Java and
Python, and investigate the explainability of our proposed
approach.
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