6522

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 22, NO. 6, NOVEMBER/DECEMBER 2025

HgtJIT: Just-in-Time Vulnerability Detection Based
on Heterogeneous Graph Transformer

Xiaobing Sun
Di Wu

Abstract—Vulnerability detection plays a crucial role in the soft-
ware development lifecycle. Commit-level vulnerability detection
aims to detect whether the changed code contributed to potential
vulnerabilities by the developer when submitting the code, which is
also referred to as Just-In-Time (JIT) vulnerability detection. Pre-
vious JIT vulnerability detection approaches relied on code metrics
and textual features, which were unable to effectively characterize
vulnerability-contributing commits (VCCs). Recently, CodeJIT (a
code-centric learning-based approach) has been proposed to detect
vulnerability at the commit-level. However, CodeJIT still has its
limitations: imprecise feature representation, static code embed-
ding, and underutilized heterogeneous information. In this paper,
we propose HgtJIT, a JIT vulnerability detection approach based
on a Heterogeneous Graph Transformer (HGT) in order to address
several limitations of the state-of-the-art CodeJIT approach. We
propose diffPDG to represent code changes and use the CCT5
model (the latest feature encoder pre-trained on a large-scale
code change corpus) to embed graph nodes to generate the most
meaningful vector representations. In addition, we employ HGT
to adequately utilize heterogeneous information of the graph to
learn vulnerability features. Extensive experiments have shown
that HgtJIT is the best-performing model, with F'1 and AUC
improvement of 14.6% —37.5% and 12.2% —53.7% compared to
the baseline model.

Index Terms—Just-in-time vulnerability detection, code change
representation, pre-trained model, heterogeneous graph learning.

I. INTRODUCTION

OFTWARE vulnerabilities, sometimes called security
bugs, can be exploited by hackers to perform malicious
behaviors, posing threats to individuals, businesses, and social

Received 17 August 2024; revised 29 May 2025; accepted 3 July 2025. Date
of publication 7 July 2025; date of current version 4 November 2025. This
work was supported in part by the National Natural Science Foundation of
China under Grant 62002309 and Grant 62202414, in part by the Jiangsu “333”
Project, and in part by the Open Foundation of Yunnan Key Laboratory of
Software Engineering under Grant 2023SE201. (Corresponding author: Sicong
Cao.)

Xiaobing Sun, Mingxuan Zhou, Sicong Cao, Xiaoxue Wu, and Bin Li are
with the School of Information Engineering, Yangzhou University, Yangzhou
225009, China (e-mail: xbsun@yzu.edu.cn; DX120210088 @yzu.edu.cn; Xiaox-
uewu@yzu.edu.cn; Ib@yzu.edu.cn; MZ120220958 @stu.yzu.edu.cn).

Lili Bo is with the School of Information Engineering, Yangzhou University,
Yangzhou 225009, China, and also with Yunnan Key Laboratory of Software
Engineering, Kunming 650504, China (e-mail: lilibo@yzu.edu.cn).

Di Wu is with the School of Mathematics, Physics and Computing, Uni-
versity of Southern Queensland, Toowoomba, QLD 4350, Australia (e-mail:
di.wu@unisq.edu.au).

Yang Xiang is with the Swinburne University of Technology, Hawthorn, VIC
3122, Australia (e-mail: yxiang@swin.edu.au).

Digital Object Identifier 10.1109/TDSC.2025.3586669

, Member, IEEE, Mingxuan Zhou, Sicong Cao
, Senior Member, IEEE, Bin Li, and Yang Xiang

, Xiaoxue Wu'”?, Lili Bo",
, Fellow, IEEE

public security. For instance, the Sunburst vulnerability, which
emerged in 2020, allowed hackers to infiltrate the computer
systems of hundreds of companies and government institutions
by manipulating the updates of SolarWinds software.! This
incident raised significant concerns because it enabled hackers
to access a vast amount of sensitive information, including
data from government agencies and businesses. The inestimable
consequences highlight the importance of timely and accurate
vulnerability detection.

Existing efforts: Traditional approaches leverage static code
analyzers [1], [2], [3] to hunt security vulnerabilities hidden in
programs. However, even state-of-the-art tools have achieved
limited success in realistic scenarios as they heavily rely on
hand-crafted vulnerability specifications and rules, which are
time-consuming and error-prone. Benefiting from the tremen-
dous progresses of Deep Learning (DL) in code understanding,
recent years have witnessed an increasing in the popularity
of learning-based vulnerability detection approaches [4], [5],
[6], [7], [8], [9], [10], [11] because they can automatically
learn implicit code patterns from vulnerable files or functions
without human intervention. However, it is crucial to identify
vulnerabilities as soon as possible because late fixes and conse-
quent damage due to affected systems are severe. Toward that,
Just-In-Time (JIT) vulnerability detection approaches have
been proposed to detect vulnerabilities at the commit-level. It is
more practical because it can timely catch vulnerabilities once a
new code change is committed to the repository, fundamentally
reducing the potential security risks. Early works [12], [13]
generally take code metrics and textual features as input to
train a Machine Learning (ML)-based detection model. Despite
their effectiveness, a recent empirical study [14] pointed out that
simple statistical or textual features fall short in characterizing
vulnerability commits because they often involves changes in
source code structure, modifications in program dependencies,
and the evolution of code relations. In response to this, an emerg-
ing research CodeJIT [15] proposed a code-centric JIT vulner-
ability detection approach. It constructs a Code Transformation
Graph (CTG) based on changed code, related unchanged code,
and program dependency relations to represent the semantics of
code changes. Subsequently, it employs Graph Neural Networks
(GNNGs) to learn vulnerability features for classification.

Limitations: While promising, it still has several limitations:

Thttps://www.mandiant.com/resources/blog/evasive-attacker-leverages-
solarwinds-supply-chain-compromises- with-sunburst-backdoor

1545-5971 © 2025 IEEE. All rights reserved, including rights for text and data mining, and training of artificial intelligence and similar technologies.
Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Nanjing Univ of Post & Telecommunications. Downloaded on November 13,2025 at 08:01:26 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-5165-5080
https://orcid.org/0000-0003-3688-4437
https://orcid.org/0009-0009-5432-651X
https://orcid.org/0000-0002-7267-4923
https://orcid.org/0000-0002-4753-8161
https://orcid.org/0000-0001-5252-0831
mailto:xbsun@yzu.edu.cn
mailto:DX120210088@yzu.edu.cn
mailto:xiaoxuewu@yzu.edu.cn
mailto:xiaoxuewu@yzu.edu.cn
mailto:lb@yzu.edu.cn
mailto:MZ120220958@stu.yzu.edu.cn
mailto:lilibo@yzu.edu.cn
mailto:di.wu@unisq.edu.au
mailto:yxiang@swin.edu.au
https://www.mandiant.com/resources/blog/evasive-attacker-leverages-solarwinds-supply-chain-compromises-with-sunburst-backdoor
https://www.mandiant.com/resources/blog/evasive-attacker-leverages-solarwinds-supply-chain-compromises-with-sunburst-backdoor

SUN et al.: HgtJIT: JUST-IN-TIME VULNERABILITY DETECTION BASED ON HETEROGENEOUS GRAPH TRANSFORMER

o Imprecise Feature Representation: Inspired by the effec-
tiveness of Code Property Graphs (CPG) [16] in model-
ing vulnerability features, CodeJIT merges the CPGs of
the pre- and post-change files, and prunes vulnerability-
irrelevant nodes that do not have structure or dependency
relations with the changed nodes to construct Code Trans-
formation Graph (CTG). However, since the scale of CPGs
grows exponentially as the lines of code increase, blindly
considering all contextual nodes still introduce numerous
noise information. As reported in [17], current GNN-based
vulnerability detectors show obviously performance degra-
dation when the CPG of an input function has more than
50 nodes, let alone the CTG which is derived from files.

o Static Code Embedding: CodeJIT uses Word2Vec [18]
trained on a project-specific dataset to generate vector
representations of source code for model training. Such
static code embeddings have been proven to be susceptible
to the problem of Out-Of-Vocabulary (OOV), leading to
poor generalization ability [19].

® Underutilized Heterogeneous Information: CodelJIT uti-
lizes CTG as input to relational graph neural networks for
learning vulnerability features. However, the code change
graph not only contains information on edge types (e.g.,
data dependencies, control dependencies) but also includes
information on node types (e.g., addition and deletion of
code change). Relational graph neural networks simply
distinct non-sharing weights for edge type alone, making
them insufficient to capture heterogeneous graph’s prop-
erties [20], [21], leading to the model being unable to
be aware of the semantic change relations brought about
by the change information and affecting the learning of
vulnerability features.

Our Work: In response to these limitations, we propose a
JIT vulnerability detection approach called HgtJIT based on
Heterogeneous Graph Transformer (HGT) [20]. First, We con-
struct a novel change-level graph representation named diffPDG
by merging the Program Dependency Graphs (PDG) [22] of
pre-change and post-change files, and perform program slicing
based on changed nodes to focus on vulnerability-relevant parts.
Compared to CTG, diffPDG pays more attention on semantics
relations between statements, and limits the context scope to
alleviate the negative impact of noise nodes. Second, we use the
CCTS5 model [23], which is pre-trained on the large-scale code
change corpus, to embed graphs nodes, effectively alleviates the
OOV problem. Third, we employ the HGT model [20] to learn
vulnerability features. HGT assigns a unique attention weight
for each type of node and edge node, sufficiently utilizing the
heterogeneous information of code changes.

Evaluations: We evaluate HgtJIT and five state-of-the-art
baselines, including VCCFinder [12], DeepJIT [24], CC2Vec
[25], CCT5 [23], and CodeJIT [15], on a real-world dataset
of 10,984 commits, in which 31.5% samples are Vulnerability-
Contributing Commits (VCC). The experimental results show
that HgtJIT achieves optimal performance in JIT vulnerabil-
ity detection. Compared to state-of-the-art approaches, our ap-
proach has shown improvements by 14.6%-37.5% in F'1 and
12.2%-53.7% in AUC. This indicates that HgtJIT can effec-
tively detect potential VCCs in practice.

6523

Contributions: In summary, the main contributions of this
paper are as follows:

® We propose a novel graph-based representation of code
changes called diffPDG, which focuses more on contextual
nodes semantically highly related to changed nodes.

® We propose a novel approach HgtJIT, which fully preserves
change domain knowledge and utilizes heterogeneous in-
formation of diffPDG for JIT vulnerability detection.

® We extensively evaluate our proposed approach on a large-
scale dataset, demonstrating its effectiveness on JIT vul-
nerability detection.

e To facilitate further research, we have made our source
code, models, and datasets available.?

II. BACKGROUND

A. JIT Software Vulnerability Detection

In an environment where software iterations occur frequently,
JIT vulnerability detection becomes crucial. JIT vulnerability
detection promptly detects and reports potential vulnerabilities
when developers commit code. This approach mitigates the risk
of introducing vulnerabilities, it often deals with smaller code
segments, enabling developers to swiftly find and fix problems.
CodelIT [15] introduces a state-of-the-art, code-centric JIT vul-
nerability detection approach, which consists of three steps:

Step 1 (CTG Construction): CodeJIT represents code changes
by using CTG. It first generates CPG of the code before and
after the change, and then merges it, treating common nodes
as unchanged nodes and added/deleted nodes as change nodes.
Finally, in order to remove parts unrelated to code changes, all
the nodes associated with change nodes are retained to form
CTG.

Step2 (Feature Engineering): CodelJIT uses Word2vec [18]
to construct node content vectors to capture semantic relations
between code tokens. These vectors are further enhanced to form
node feature vectors by integrating change operators (added,
deleted, and unchanged). This integration is achieved by con-
catenating the respective one-hot vectors of the operators with
the embedded vectors [15].

Step3 (JIT vulnerability detection with RGCN): CodelIT
feeds the embedded graph into a relational graph neural net-
work. At each GNN layer, nodes exchange information with
neighboring nodes via various relations to capture the local
graph structure. After multiple GNN layers, a graph-level vector
is formed by aggregating node features using a graph readout
function (e.g., sum, average, max). Finally, a Multilayer Percep-
tron (MLP) is used to classify graph-level vectors, identifying
vulnerabilities in graph.

However, there exist the following limitations.

Limitation I (Imprecise Feature Representation): Leveraging
CPG has proven effective in capturing complex vulnerability
features, which is why CodeJIT integrates the CPGs of both
pre- and post-change files to construct a CTG. During this
process, it attempts to prune nodes that are not structurally or
semantically related to the changed code. However, the CPGs
can grow exponentially as the lines of code increase, leading to

Zhttps://github.com/mxzhou666/HgtJ/IT

Authorized licensed use limited to: Nanjing Univ of Post & Telecommunications. Downloaded on November 13,2025 at 08:01:26 UTC from IEEE Xplore. Restrictions apply.

https://github.com/mxzhou666/HgtJIT

6524

a dramatic increase in the number of nodes. While pruning is
intended to reduce noise, the strategy of including al// contextual
nodes which are related by structural or dependency relation
can introduce a substantial amount of irrelevant or redundant
information. This excessive inclusion creates a dense and noisy
graph, which can decrease the learning capacity of GNN. As
noted in [17], GNN-based models exhibit a marked decline in
performance when the CPG of an input function surpasses 50
nodes. This performance degradation is more severe in the CTG,
which are derived from entire files and therefore contain even
more nodes. The sheer volume of nodes not only complicates the
learning process but also increases the likelihood of the model
missing critical vulnerability features due to the overwhelming
amount of unrelated information.

Limitation 2 (Static Code Embedding): CodeJIT employed
the Word2Vec technology trained on project-specific datasets
to generate vector representations of source code for model
training. However, such static code embeddings have been
proven to be susceptible to the problem of OOV, leading to poor
generalization ability [19]. In addition, programming languages
are structured languages with unique syntactic and semantic
structures. These factors are critical to accurately understanding
the meaning of code and correctly representing its features.
If code is simply treated as natural language, Word2vec may
not be able to fully learn and utilize programming language
domain-specific knowledge, much less absorb the code change
domain knowledge hidden in code commits.

Limitation 3 (Underutilized Heterogeneous Information):
CodelIT utilizes CTG as input to relational graph neural net-
works for learning vulnerability features. However, the code
change graph as a heterogeneous graph not only contains types
information of edge (e.g., data dependencies, control dependen-
cies) but also includes types information of node (e.g., addition
and deletion of code change). Relational graph neural networks
simply distinct non-sharing weights for edge type alone, making
the model unable to jointly learn the semantic relations of edges
and change information of nodes in the graph [20], [21]. In
addition, CodeJIT includes node type information as part of
node features, which weakens the model’s focus on change
information, leading to the model being unable to be aware
of the semantic change relations brought about by the change
information and affecting the learning of vulnerability features.

The limitations of CodeJIT motivate us to seek a more effec-
tive JIT vulnerability detection approach named HgtJIT. HgtJIT
can build more accurate code change graphs, generate more
meaningful node feature representations, and sufficiently uti-
lize heterogeneous information of graph learning vulnerability
features.

B. Code Change Representation Learning

In the field of JIT vulnerability detection, precise representa-
tion of code changes is critical. Code changes include operations
such as addition, deletion, and modification, often spanning
across multiple lines of code and files. Previous approaches
[26] typically relied on manually designed features or rules for
feature extraction to represent code changes as feature vectors.
However, such approaches are confined to superficial features

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 22, NO. 6, NOVEMBER/DECEMBER 2025

and struggle to capture the semantic information embedded
within these changes.

In recent years, there has been substantial attention directed
towards the technique of code change representation learning
[27], [28], [29], [30], [31]. Its objective is to acquire a distributed
representation of code changes, capturing higher-level features
with semantic information, thereby better reflecting the content
and intent of code changes. This technique has proven successful
in various software engineering tasks, including commit mes-
sage generation [32], [33], JIT defect prediction [24], [34], [35],
and JIT comment update [36].

CCTS5 [23] stands as a state-of-the-art pre-training model
specifically focused on code change representation learning.
It has been trained on a large-scale corpus of code changes,
designed with five pre-training tasks specific to code changes.
Its architecture is rooted in the TS model [37], [38], employing an
encoder-decoder framework comprising 12 layers of transform-
ers, each utilizing 12 attention heads for multi-head attention
computation. Utilizing self-attention mechanisms enables it to
aggregate different parts of the token sequence with varying
weights. Generally, attention weight calculation is as follows:

Attention(Q, K, V) = soft (QKT> Voo
ention(Q, K,V) = softmax

Vdy,
Here, @ represents the query vector, K represents the key vector,
V' represents the value vector, and dj; is the dimension of the
vectors.

In this study, we leverage CCT5 to embed graph nodes of diff-
PDG, utilizing the domain knowledge of code changes learned
on large-scale code datasets to generate the most meaningful
feature representation.

C. Heterogeneous Graph Transformer

Heterogeneous graphs hold significant value in code analysis
as they can consider multiple types of nodes and edges together
to provide a more comprehensive reflection of the code’s struc-
ture and semantics. In JIT vulnerability detection, heterogeneous
graphs can be employed to represent the complexity of code
changes, including additions, deletions, unmodified operations,
and the dependency relations between them. However, effec-
tively utilizing heterogeneous graphs poses a challenging task.
Traditional graph neural network approaches mainly deal with
homogeneous graphs and offer limited support for heteroge-
neous graphs. Hence, it is crucial to utilize the information
of heterogeneous graphs to learn vulnerability features in JIT
vulnerability detection.

HGT [20] is an emerging deep learning model designed
specifically to process heterogeneous graph data with different
node and edge types. Its idea is to parameterize the weight matrix
of heterogeneous mutual attention, message passing, and prop-
agation steps using the meta-relation of heterogeneous graphs.
The meta-relation considers the types of edges along with their
source and target nodes together. For a specific edge F = (s, t)
connecting nodes s and ¢, its meta-relation is expressed as 7(s),
o(e), 7(t), where 7 and ¢ indicate the types of s and ¢, and e,
respectively. This meta-relation characterizes the connectivity
pattern within the heterogeneous graph. Understanding these

Authorized licensed use limited to: Nanjing Univ of Post & Telecommunications. Downloaded on November 13,2025 at 08:01:26 UTC from IEEE Xplore. Restrictions apply.

SUN et al.: HgtJIT: JUST-IN-TIME VULNERABILITY DETECTION BASED ON HETEROGENEOUS GRAPH TRANSFORMER

Step [: Feature Extraction
o0 0
@)
Ot

O O

O —CCT5> O e
& — s -
@ ©Of
diffPDG Node
- Construction Embedding
CDG O Keep © Add
Unlabeled DDG © Del
Commits

—> Training Phase

— — 9 Detection Phase

Fig. 1. The workflow of HgtJIT.

relations is crucial as they potentially contribute to the creation
of more precise representations compared to considering node
or edge types in isolation.

Currently, HGT has been applied to various domains, such as
program analysis [21] and bioinformatics [39].

III. METHODOLOGY
A. Overview

To address the three key limitations of CodeJIT, we propose
a JIT vulnerability detection approach called HgtJIT based on
HGT, as shown in Fig. 1. First, we use PDG instead of CPG to
generate code graph representation. We extract the PDG of the
code before and after and merge them, mark common nodes as
keep nodes, and mark new and deleted nodes as change nodes.
Then, we perform forward and backward slicing based on these
change nodes to preserve the context nodes strongly related to
the change code to construct the diffPDG. This graph represents
a greater emphasis on the dependency relations between codes
while preserving the AST information in each statement node
(the root of the AST). Second, we use the CCT5 model to
generate the embedding representation of the graph nodes. CCT5
is pre-trained on a large-scale change dataset and able to gen-
erate more meaningful vector representations that retain more
code semantics and change information compared to Word2vec
trained on a specific limited dataset. Third, instead of using
a relational graph neural network, we adopt HGT for hetero-
geneous graph learning. HGT utilizes its internal multi-head
self-attention mechanism to focus on different nodes and relation
types and fully leverages heterogeneous information to learn
graph features. Finally, after processing through a classification
layer, we obtain the commit vulnerability detection results. We
will describe the technical details in the following chapters.

B. Feature Extraction

1) diffPDG Construction: In this work, We propose a novel
change-level graph representation named diffPDG. The diffPDG

Authorized licensed use limited to: Nanjing Univ of Post & Telecommunications. Downloaded on November 13,2025 at 08:01:26 UTC from IEEE Xplore. Restrictions apply.

6525

Step 2: Graph Learning

—_—

Benign
Commit

Vulnerability-
Contributing
Commit

Detection Model

iIHII,'J] iIﬂIII,'J]

Step 3: JIT Vulnerability Detection

can be constructed in three steps, namely, PDG construction,
merge PDG, and slice to diffPDG. The details are as follows:

Generating Pre- and Post-Change PDGs: For each commit,
it typically involves code changes both before and after. We
employ the Joern [16] tool to parse the source code before and
after the commit separately, generating the corresponding PDG
denoted as G = (V, E). Here, V represents the set of nodes,
with each node representing a program statement in the code.
E represents the set of edges, with each edge denoting data
dependencies or control dependencies between code elements.

Merging into diffPDGs: In this phase, we merge the pre-
change and post-change PDG into a unified representation,
namely diffPDG. The primary process is as follows:

¢ To label nodes present in both pre-change and post-change

states, representing unchanged code elements, i.e., keep
nodes.

¢ To label nodes that exist in the post-change state but not in

the pre-change state, signifying added code elements, i.e.,
add nodes.

¢ To label nodes that are present in the pre-change state but

are absent in the post-change state, indicating deleted code
elements, i.e., del nodes.

To avoid conflicts in node and edge identifiers during the
merge, we reassign their identifiers. The merged graph can be
represented as Grerge = (Vinerges Emerge), Where Vi epge and
Ernerge can be defined as:

Vinerge = {(id, code, vtype)|vtype € {keep, add, del}}
Ererge = {(id1,id2, etype)|etype € {CDG,DDG}} (2)

Here, id in V,erge denotes the unique identifier of a node,
code represents the content of the node, and vtype signifies
its change type. In E,crge, 7d1 and id2 represent the starting
and ending nodes, and etype denotes the dependencies between
code elements.

Slicing diffPDGs: The slicing operation is a crucial step in
the graph representation process. Its primary goal is to extract
nodes and edges relevant to code changes from the merged PDG

6526

to construct the diffPDG. During this process, we select changed
code nodes (i.e., add nodes and del nodes) as the slicing criteria.
The outcome of slicing is a set of nodes and edges directly or
indirectly related to the slicing criteria. Slicing operations are
based on control dependency and data dependency relations, in-
cluding two directions of slicing: backward slicing and forward
slicing [40].

To capture all relevant code nodes associated with source
code nodes, we may conduct multiple slicing iterations. In each
iteration, we consider code nodes already sliced and further
trace their control and data dependency relations. This iterative
process can be conducted in multiple rounds as needed, to ensure
that we capture all potentially relevant code nodes associated
with source code nodes.

Fig. 2(b) presents the constructed diffPDG for Fig. 2(a),
where the solid/dotted edges denote control/data dependencies
and red/green/blue circulars represent deleted/added/keep state-
ments. Here, we set the number of iterations to 1 so that all
the retained keep nodes are directly dependent on the changed
nodes. Some nodes and edges are omitted for ease of viewing,
respectively.

2) Node Embedding: To feed diffPDG into the HGT model,
the node content in the graphs should be embedded into numeric
vectors. we use CCTS5 to embed the graph nodes of the diffPDG.
CCTS is the latest pre-trained model in code change represen-
tation learning. It allows us to combine large-scale code change
knowledge with diffPDG to improve the performance of JIT
vulnerability detection. The embedding process can be divided
into the following two steps:

Tokenizer: Similar to the typical embedding process for code
pre-trained models [38], [41], we begin by tokenizing the content
of each node in the diffPDG using the RoOBERTa tokenizer [42].
Each tokenized node is then represented as a token sequence,
with a special [C'LS] token added at the beginning of the
sequence. This can be represented as follows:

[CLS],c1,¢9,...iCn 3)
Here, [C'LS] serves as a special token that aggregates informa-
tion from the entire token sequence, where c; represents each
token after tokenization.

CCT5 Encoder for Graph Node Embedding: The token se-
quences resulting from tokenization are input into the CCTS
model’s encoder. CCTS5 employs self-attention mechanisms, for
the [C'LS] token, it participates in attention calculations with
other tokens and generates attention weights. This means that
[CLS] establishes a connection with each token of the entire
token sequence, which will carry the information of the entire
token sequence and become an embedded representation of each
statement node in the graph.

In this work, we do not use special tokens for different line
types (e.g., [ADD], [DEL]) because our goal is to utilize the
CCT5 model to embed node content, capturing the semantic
information in code changes, rather than using it as our final rep-
resentation method. The diffPDG already effectively represents
these changes information, and the HGT model will leverage
this information for feature learning.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 22, NO. 6, NOVEMBER/DECEMBER 2025

1 static int foo(AVBitStreamFilterContext *bsfc, AVCodecContext
2 *avctx, const char *args, uint8_t **poutbuf,

3 int *poutbuf_size, const uint8_t *buf,

4 int buf_size, int keyframe){

5 - int amount = args ? atoi(args) : 10000

6 unsigned int *state = bsfc ->priv_data;

7 + int amount = args ? atoi(args) : (*state % 10001+1);
8 int 1;

10 *poutbuf= av_malloc(buf_size + FF_INPUT_BUFFER_PADDING_SIZE);
11

12 memcpy(*poutbuf, buf, buf_size + FF_INPUT_BUFFER_PADDING_SIZE);
13 for(i=0; i<buf_size; i++){

14 (*state) += (*poutbuf)[i] + 1;

15 if(*state % amount == 0)

16 (*poutbuf)[i] = *state;

17 3

18 return 1;

19 3}

(a) Code change example.

Generating Pre- and Post-Change PDGs

Merging into diffPDGs

Slicing diffPDGs
S
9

@ i O Keep i
| O Add |
Sliced difPDG | @ Del |

(b) The construction process of diffPDG of 2a.

Fig. 2. Example of diffPDG.

C. Graph Learning

We employ the HGT model, leveraging its ability to effec-
tively handle heterogeneous graphs to better learn the vulner-
ability features within code changes. Fig. 3 shows the archi-
tecture of HGT, which aims to aggregate information from
source node s using meta-relation to obtain a contextualized
representation of target node ¢. This process can be decomposed
into three parts: heterogeneous mutual attention, heterogeneous
message passing, and target-specific aggregation. For ease of
understanding, we will use a diffPDG subgraph as input to elab-
orate on important components in detail. Note, we use H ()[t]

Authorized licensed use limited to: Nanjing Univ of Post & Telecommunications. Downloaded on November 13,2025 at 08:01:26 UTC from IEEE Xplore. Restrictions apply.

SUN et al.: HgtJIT: JUST-IN-TIME VULNERABILITY DETECTION BASED ON HETEROGENEOUS GRAPH TRANSFORMER

6527

Heterogeneous Mutual Attention

K[s,]

K-Linearie,

(]

Fig. 3. The Architecture of a HGT layer.

to denote node #’s embedding in the I-th layer, and H~D[t] to
denote node ¢’s embedding (I — 1)-th layer, through the whole
section.

Heterogeneous Mutual Attention: The heterogeneous mutual
attention phase determines the importance of heterogeneous
messages during message passing, similar to a self-attention
mechanism [43]. This process calculates the attention distribu-
tion of neighboring node s to node ¢ in the graph while consid-
ering the node and edge types. For a specific edge e = (s, 1),
the unnormalized attention score is computed using the formula
below, taking into account both the node and edge types:

AW (s e,t) = (K(i) (s) - Wf(e)) (Q(i)(t))T>

Hir(s),¢(e),7 (1))
L HATts),ee), 7)) 4)
\/& (

In this formula, Qii()t) (t) and K il()s) (s) are the query and key
obtained through the linear projection layers respectively for
calculating attention, formulated as:

QW) =Q— Lz’nearf()t)(H(lfl) 1)))

KW(s) =K — Linearii)s

()(H(l_l)[s]) (6)

where i (i € [1, h]) represent the i-th head of attention. The train-
able prior variable fi(7(s),4(c),r(+)) acts as an adaptive scaling
factor for each meta-relation triplet, where 7 and ¢ indicate
the types of s and ¢, and e, respectively. As shown in Fig. 3,
there is a meta-relation (keep, C DG, add) between s, and ¢,
and there is a meta-relation (keep, DDG, add) between s2 and
t. Nodes s; and sy both generate K[s;] and K[so] through
linear projection K — Linearye.p, while node ¢ generates Q]
through @ — Linear,qq. Subsequently, based on different edge
types, K[s1] and Q[t] are calculated for similarity through
Wépa, while Kso] and Q[t] are calculated for similarity
through W5 ..

Authorized licensed use limited to: Nanjing Univ of Post & Telecommunications. Downloaded on November 13,2025 at 08:01:26 UTC from IEEE Xplore. Restrictions apply.

»(H— T

¥

C-Linearaa

Target-Specific
Aggregation

Message(sz e t)

Heterogeneous Message Passing

After obtaining the unnormalized scores, a softmax activation
is applied to them, and the results from multiple attention heads
are concatenated to form the heterogeneous mutual attention
Attention (s, e, t), formulated as:

Attention® (s, e,t) = || A'(s,e,t) (7)

i€[1,h]
After such processing, even between pairs of the same node
type, the model can capture different semantic relations using
meta-relation.

Heterogeneous Message Passing: HGT’s message passing
process is similar to the traditional Transformer model. For
each edge e from node s to node ¢, heterogeneous messages
are passed from s to t. Specifically, information from node s
(denoted as H(~1 [s]) is first projected into the message space
using M — Linear_), taking into account the node’s type 7(s),
and then incorporating the edge’s type ¢(e) dependency. The
formula is as follows:

(4) A T (4) (1-1) WM
MW (s e t) =M Linear; (H [ﬂ) Wiy @)

As shown in Fig. 3, s1 and s obtain V[s;] and V'[s5] through
the same linear projection V' — Linearyeep, respectively. How-
ever, due to different meta-relations, they dot products with
different WAL, and WAL, ., multiple message heads indepen-
dently generate messages, ultimately forming the heterogeneous
message Message! (s, e, t), formulated as:
| M'(s,e,t))

i€[1,h]

Message(l)(s, et) =

Target-Specific Aggregation: After collecting messages from all
neighboring nodes s € N(t) of each node ¢ and calculating
attention scores, we use these attention scores as weights to
simply average messages and generate aggregated information
for specific nodes. The aggregation formula is as follows:

ail) = Z (Attention(l)(s,e,t) -Message(l)(s,e,t))
seN(t)
(10)

6528

Finally, the aggregated information of the node ¢ (denoted
as atl) is combined with its previous residual information
HU-1 [¢t]. This step is essential for the model to capture changes
and updates, enriching node representations. The combination
formula includes an activation function o and C' — Linear),
considering the node’s type 7(t):

HO[) = o ((C-Linear 1 (o)) + HE DR (D

As shown in Fig. 3, after target-specific aggregation process-
ing, we generate a new representation of the target node ¢ in the
current HGT layer H'[t]. By overlaying L layers, we can obtain
the node representation of the entire graph H'.

D. JIT Vulnerability Detection

After using HGT to aggregate node information, we employ
global attention pooling [44] to aggregate the representations
of all nodes into a comprehensive representation of the entire
diffPDG. Finally, leveraging a multi-layer perceptron (MLP)
as a classifier, the generated graph representation is fed into
the classifier for JIT vulnerability detection tasks, ultimately
producing predictive outcomes.

IV. EXPERIMENTS

A. Research Questions

To evaluate our proposed approach, we aim to address the
following Research Questions (RQs):

RQI. Effectiveness on JIT Vulnerability Detection: To what
extent can the JIT vulnerability detection performance HgtJIT
achieve?

Recently, a state-of-the-art JIT vulnerability detection ap-
proach called CodeJIT has been proposed, However, as men-
tioned in Section II-A, CodeJIT has three key limitations, lead-
ing to inaccurate detection. Therefore, we propose our HgtJIT
approach to address these challenges. We investigate if the
performance of our HgtJIT outperforms the state-of-the-art JIT
vulnerability detection approaches.

RQ?2. Effectiveness in the cross-project setting: To what extent
can HgtJIT maintain its vulnerability detection performance in
the cross-project setting?

Cross-project evaluation is crucial to assess the generalization
ability of JIT vulnerability detection models. We investigate
whether our HgtJIT approach can effectively detect VCCs across
projects and outperform the state-of-the-art approaches.

RQ3. Impact of diffPDG: How does the diffPDG impact the
performance of HgtJIT?

HgtJIT uses diffPDG to represent code changes. We inves-
tigate whether diffPDG which focuses more on dependency
relations contributed to JIT vulnerability detection compared
to CTG. We also evaluate the impact of different context depths
on the performance of HgtJIT.

RQA4. Impact of CCTS5: How does generating feature repre-
sentations using CCT5 impact the performance of HgtJIT?

HgtJIT uses a model CCTS5 pre-trained on a large-scale code
change dataset to embed graph nodes of diffPDG. We investi-
gate whether feature representations with code change domain

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 22, NO. 6, NOVEMBER/DECEMBER 2025

TABLE I
STATISTICS OF THE STUDIED DATASET

#Projects #VCCs #Non-VCCs #Total #Ratio
_. FFmpeg 3,462 4449 7911 1:1.29
g QEMU 3,183 3551 6,734 1:1.12
B Linux 780 783 1,562 1:1
o) 503 projects more...
Total 8,975 11,299 20,274 1:1.26
FFmpeg 1,821 4,000 5821 1:22
E, QEMU 1,178 2,498 3,676 1:212
2 Linux 271 596 867 1:2.2
i 201 projects more...
Total 3,474 7,510 10984 1:2.16

knowledge are effective in improving the JIT vulnerability de-
tection performance of HgtJIT compared to other embedding
approaches.

RQS5. Effectiveness of HGT: How does the HGT affect the
performance of HgtJIT?

One of the key contributions of our approach is learning
vulnerability features using HGT, which jointly learns the se-
mantic relations of edges and change information of nodes in the
diffPDG. We aim to show whether heterogeneous information
in diffPDG captured by HGT contributes to JIT vulnerability
detection in comparison with other popular GNNSs.

B. Datasets

We used the dataset provided by CodeJIT [15] for model
training and evaluation. They used the SZZ algorithm [45] to
label the commits that last modified the statements associated
with vulnerabilities as VCCs. As shown in Table I, the CodeJIT
dataset contained 20,274 commits including 11,299 non-VCCs
and 8,975 VCCs (Column 3-5) from the vulnerabilities reported
from Aug 1998 to Aug 2022 in real-world 506 C/C++ projects
(Column 2) such as FFmpeg, QEMU, and Linux. Column 6
denotes the ratio of VCCs in each project.

We also performed dataset cleaning to filter (1) multi-file
commits (i.e., a single commit involves changes to multiple
files) because diffPDG was generated from a single file, and
(2) commits which were mislabeled or could not be parsed.
Such process was independently annotated by two authors.
When 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%,
and 100% of the dataset had been annotated, we conducted
a cross-verification of their results. Cohen’s Kappa coefficient
rating aggregation was utilized to measure the discrepancy be-
tween the two annotators’ labels [46]. There were a total of 11
rounds of labeling, with each round incorporating the dataset
from the previous one. The Kappa coefficient ranges from 0.0%
to 100.0%, where a higher value indicates better consistency.
Generally, a Kappa coefficient exceeding 80% signifies a high
degree of agreement between the two evaluations. In our labeling
process, the overall Kappa coefficient achieved was 92.44%,
indicating excellent consistency. After filtering, a total of 10,984
commits were retained, including 3,474 VCCs and 7,510
non-VCCs.

Authorized licensed use limited to: Nanjing Univ of Post & Telecommunications. Downloaded on November 13,2025 at 08:01:26 UTC from IEEE Xplore. Restrictions apply.

SUN et al.: HgtJIT: JUST-IN-TIME VULNERABILITY DETECTION BASED ON HETEROGENEOUS GRAPH TRANSFORMER

C. Baselines

To evaluate our approach, we compared HgtJIT with the
following five state-of-the-art JIT vulnerability detection ap-
proaches:
® VCCFinder [12]: A machine learning approach which uses
commit messages and expert features to train a Support
Vector Machine to identify VCCs.

® DeepJIT [24]: A CNN-based end-to-end deep learning
model that automatically extracts features from commit
messages and code change sets and predict whether a given
commit is buggy or not.

® CC2Vec [25]: CC2Vec is a pre-trained model in the code

change domain that generates distributed representations
of code changes through a hierarchical attention network.
It models the structural information of code changes and
uses attention mechanisms to identify important aspects of
code changes. Using CC2Vec to capture commit features
and combining it with DeepJIT can achieve better results.
e CCT5 [23]: As the latest pre-trained model in the field
of code change, it can adapt to various downstream tasks,
including JIT vulnerability detection, through fine-tuning.
® CodeJIT [15]: A novel code-centric JIT vulnerability de-
tection approach. It considers source code changes induced
by commits as the direct and decisive factors for assessing
the risk of a commit. It designed a novel graph-based
multi-view code change representation approach, linking
changed code in commits with unchanged code. It devel-
oped a graph-based JIT vulnerability detection model to
capture vulnerability features at the commit-level.

D. Evaluation Metrics

In our study, to comprehensively evaluate the performance
of different models, we utilized common evaluation metrics
[47], including Precision, Recall, F'1 and AUC'. Precision
measures the model’s ability to correctly predict positives, while
Recall measures the model’s ability to capture positive cases.
It can be expressed as Precision = TPZ_% and Recall =
Tlﬂr%, where T'P represents the true positives, F'P and F'IN
represent false positives and false negatives, respectively. The
F'1 is the harmonic average of precision and recall, expressed
as 1= 2L ;";gggi}f;ﬁ” .The AUC (Area Under the Curve)
measures the model’s ability to distinguish between positive and
negative classes. Specifically, it represents the area under the
Receiver Operating Characteristic (ROC) curve, where a higher

AUC indicates better model performance.

E. Implementation

We employed the widely used Joern [16] tool to generate
PDG. Our experiments were conducted on a server running
Ubuntu 18.04 with an NVIDIA Tesla T4 16GB GPU. We im-
plemented the models using the PyTorch? framework and DGL*
library. In our experiments, the feature encoder consisted of four
HGT layers, with embedding and hidden layer sizes set to 768.

3https://pytorch.org/
“https://github.com/dmlc/dgl

Authorized licensed use limited to: Nanjing Univ of Post & Telecommunications. Downloaded on November 13,2025 at 08:01:26 UTC from IEEE Xplore. Restrictions apply.

6529

TABLE II
TEMPORAL SPLIT: PERFORMANCE EVALUATION RESULTS COMPARED TO
BASELINES

Approach |Precision Recall F1 AUC p-value

VCCFinder 0.34 058 043 0.54 0.002
Deep]IT 0.30 0.60 040 0.70 0.002
CC2Vec 0.30 0.62 041 0.71 0.002

CCT5 0.33 062 043 074 0.002
Code]IT* 0.55 0.42 048 0.65 0.002
Hgt/IT | 0.61 0.51 0.55 0.83 /

* Since we filtered commits that span multiple files, were mislabeled, or
cannot be compiled, CodeJIT’s performance in our experiment is
worse than that reported in the original paper.

Precision = 0.61 (p-value = 5.36e-4).
Recall = 0.62 (p-value = 1.08e-3).
AUC = 0.83 (p-value = 7.36e-4).

Each HGT layer used eight attention heads with a dropout rate
of 0.2. We used Adam [48] for optimizing with 64 batch size and
a learning rate of le-4. We set the maximum number of epochs
in our experiment as 30 and adopted an early stop mechanism to
obtain the best parameters. For each approach, we repeated the
experiment 10 times and the final evaluation result we adopted
was the average of each measurement metric.

V. EXPERIMENTAL RESULTS
A. RQI: Effectiveness on JIT Vulnerability Detection

Experimental Design: We consider five aforementioned base-
lines: VCCFinder [12], DeepJIT [24], CC2Vec [25], CCTS5 [23],
and CodeJIT [15]. These approaches all have been open-sourced,
we directly use their official implementations. Besides, in order
to comprehensively compare the performance among baselines
and HgtJIT, we consider Precision, Recall, F1 and AUC
as evaluation metrics and conduct experiments on the dataset
constructed in Section IV-B. We follow the same temporal split
strategy to build the training data and testing data from the
original dataset as previous works do [12], [24], [34]. Specif-
ically, we first sort all commits by their timestamp in ascending.
Then, the top 80% of commits are treated as training data, while
the rest 20% of commits are treated as test data. In total, the
training/testing split in the number of commits for this setting
is 9,071/1,813. We extract 100 VCCs from the training/testing
(80/20) set for qualitative analysis and these data are not used
for model training and testing. To check if the performance
difference between a baseline model and HgtJIT is statistically
significant, we applied the Wilcoxon signed-rank test (a statis-
tical test method corresponding to paired sample T-test which
can compare whether the difference between the average of two
groups is significant or not in the case of small samples) at a 95%
significance level on their performance of 10 times experiments.

Results: The evaluation results are reported in Table II and
the best performances are highlighted in bold. According to
the results, HgtJIT outperforms all state-of-the-art baseline ap-
proaches on performance metrics except Recall. In particular,
HgtJIT obtains 0.61, 0.55 and 0.83 in terms of Precision, F'1
and AU C, which improves baselines by 10.9%-103.3%, 14.6%-
37.5% and 12.2%-53.7% respectively. Table II also presents
the p-values (tested by the Wilcoxon signed-rank test) when
comparing HgtJIT with the baselines in terms of F'1. We can

https://pytorch.org/
https://github.com/dmlc/dgl

6530

HgtJIT CodeJIT VCCFinder

16 36 % 38 17

Fig. 4. Overlapping among results from our model and the baselines in RQ1.

observe that HgtJIT shows significant improvements (p-value
< 0.05) over others. Fig. 4 show the overlapping analysis on the
100 extracted data from all of the models. HgtJIT discovers more
unique VCCs than all other baselines. Specifically, 36, 38, 35,
30 and 30 of the true VCCs detected by CodeJIT, VCCFinder,
CCTS5, CC2Vec and DeeplIT, respectively, can also be detected
by HgtJIT. Although CodeJIT, VCCFinder, CCTS5, CC2Vec and
DeepJIT can detect 8, 4, 6, 4 and 3 true VCCs that our model
cannot detect, our model detects 16, 14, 17, 22 and 22 unique
VCCs respectively.

Analysis: All these results demonstrate the effectiveness of
our proposed HgtJIT in JIT vulnerability detection. As previous
studies have shown [14], VCCFinder has lower performance
due to inadequate code metrics. DeepJIT combines commit
messages to enhance feature representations, but it has been
shown that many commit messages are poor-quality [49], which
can introduce noisy features. CC2Vec and CCT5 have high
Recall because they have learned code change knowledge
from large-scale code corpus through pre-training, making it
more sensitive to vulnerability features. However, they ignore
the complex semantic relations in code changes, leading to
a lack of contextual understanding. As a result, they fail to
accurately identify vulnerability features, which causes lower
Precision. Our approach HgtJIT utilizes diffPDG to represent
code changes, fully considering the complex semantic relations
between codes and achieving optimal F'1 and AUC perfor-
mance.

All metrics for CodeJIT are lower than HgtJIT. Because it uses
Word2vec for node embedding and this feature representation is
inadequate. In addition, although the powerful performance of
relational graph neural networks in inferring potential vulner-
ability semantics from the code change graph makes CodeJIT
outstanding, the underutilization of heterogeneous information
still restricts the performance of CodeJIT in detecting more com-
plex VCCs. In contrast, HgtJIT utilizes CCT5 to embed nodes,
which fully utilize the domain knowledge in large-scale code
change corpus to generate more meaningful feature representa-
tions and thus identify potential vulnerabilities more accurately.
Besides, our approach jointly learns vulnerability features from
node types and edge types in diffPDG and thus achieves better
performance.

Answer to RQ1: HgtJIT excels in JIT vulnerability detec-
tion compared to state-of-the-art baselines, F'1 and AUC

improved by up to 37.5% and 53.7% respectively. It suggests
that utilizing the heterogeneous information of code change
graphs to learn vulnerability features is highly effective.

Authort

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 22, NO. 6, NOVEMBER/DECEMBER 2025

CCT5 CC2Vec DeepJIT

35 6 22 30 4 22 30 3

TABLE III
CROSS-PROJECT: PERFORMANCE EVALUATION RESULTS COMPARED TO JIT
VULNERABILITY DETECTION BASELINES

Approach |Precision Recall F1 AUC p-value

VCCFinder 0.32 0.67 043 049 0.002
Deep]IT 0.44 0.56 0.50 0.67 0.002
CC2Vec 0.47 056 051 070 0.002

CCT5 0.50 059 054 072 0.002
Code]IT 0.74 050 0.60 073 0.011
HgtIT | 0.62 0.64 0.63 0.80 /

Precision = 0.74 (p-value = 4.44E-4).
Recall = 0.67 (p-value = 1.24E-3).
AUC = 0.80 (p-value = 8.09E-4).

B. RQ2: Effectiveness in the cross-project setting

Experimental Design: We explore how HgtJIT performs in
the cross-project setting, i.e. samples from the target project do
not appear in the source projects that are used in model training.
Table I shows the distribution of the dataset by project. Specifi-
cally, all commits in 80% of the randomly divided projects are
used to train the model, and commits in the remaining 20% of
the projects are used to test. The training/test split in the number
of commits for this setting is 9,982/1,002. We used the same
baseline, metrics as in RQ1 and also performed the Wilcoxon
signed-rank test.

Results: The evaluation results are reported in Table IIT and the
best performances are highlighted in bold. HgtJIT obtains 0.63
and 0.80 in terms of F'1 and AUC, which improves baselines
by 5.0%-46.5% and 9.6%-63.3% in terms of F'1 and AUC, re-
spectively. Table IIT also shows HgtJIT significant improvements
(p-value < 0.05) over others.

Analysis: All results indicate that HgtJIT remains effective in
a cross-project setting. VCCFinder achieves the highest Recall
because code metrics exhibit similar feature distributions across
different projects, leading the model to predict more samples as
vulnerabilities. However, this also results in increased false pos-
itives and lower Precision. CodeJIT demonstrates the highest
Precision but the lowest Recall among all approaches, it can
be attributed to its inclusion of AST nodes in the graph, which
provides a more fine-grained representation that enables more
precise detection of vulnerabilities. In the cross-project settings,
our F'1 and AUC are the highest, suggesting that HgtJIT offers
the best overall performance. This is valuable in real-world
scenarios. HgtJIT exhibits strong generalization capabilities,
enabling it to detect VCCs both effectively and accurately.

Answer to RQ2: HgtJIT still achieves optimal overall per-
formance in the cross-project settings, with F1 and AUC

wnloaded on November 13,2025 at 08:01:26 UTC from IEEE Xplore. Restrictions apply.

SUN et al.: HgtJIT: JUST-IN-TIME VULNERABILITY DETECTION BASED ON HETEROGENEOUS GRAPH TRANSFORMER

6531

0.65

= o
n Y
a 3

Precision(%)

b
n
3

0.45

Context Depth Context Depth
Fig. 5. Impact of diffPDG.

Depth 0 @ Depth |

= o])
®@ @-m © O

i O Keep 1 /,/ |
= &
i O Del g

Depth 2 Depth oo

®

-

-
-

-

O
o

\
[N
1
1
/
/

/s

& ® 6B

-®

7

©.
O,
&
©)

Fig. 6. Different depths of diffPDG sliced according to Fig. 2(a).

improved by up to 46.5% and 93.3%, indicating that HgtJIT
has stronger generalization capabilities.

C. RQ3: Impact of diffPDG

Experimental Design: We generated the CTG strictly follow-
ing the approach elaborated in the original paper, utilizing the
Joern tool [16] to generate CPG to avoid deviations from the
CodelIT. In addition, contexts of different depths are preserved
by slicing the graph based on the reachability from the change
statements, considering K-hop neighboring nodes in each itera-
tion. For a fair comparison with CTG, we also preserve different
depths of context for CTG according to our slicing rules. We
evaluated four different context depths. As shown in Fig. 6,
Depth 0 means it contains only change statements, Depth 1
means it contains change statements and their direct context
statements, Depth 2 means it contains change statements, direct
context statements, and the nearest indirect context statements,
and Depth oo means it contains change statements and all
statements with direct and indirect contexts. We follow the same
training and testing dataset in RQ1 for evaluation.

Results: The evaluation results as shown in Fig. 5. According
to the results, we find that the model using diffPDG achieves
optimal performance when considering only direct context state-
ments, Precision, Recall, F'1 and AUC with other depths
are improved by 1.5%-27.1%, 1.2%-20.4%, 6.1%-15.4% and
3.0%-23.9% respectively. In addition, the model using diffPDG

Authorized licensed use limited to: Nanjing Univ of Post & Telecommunications. Downloaded on November 13,2025 at 08:01:26 UTC from IEEE Xplore. Restrictions apply.

Context Depth

Context Depth

performs much better than the model using CTG at each context
depth.

Analysis: All these results demonstrate the effectiveness of
diffPDG in representing code changes in JIT vulnerability de-
tection. Compared with no context (Depth 0 of diffPDQG), direct
context can facilitate vulnerability detection by complementing
more semantic information. The performance gets worse when
Depth is greater than 1, since indirect context may introduce too
much noise and provide limited valuable information. The F'1
drops by 6.1% when the Depth is 2, indicating that the indirect
context does not carry much relevance for the changed code.
The F'1 further drops by 6.5% when considering all the indirect
context (Depth oo of diffPDG), because most of these context
statements are barely correlated with the changed statements but
introduce excessive noise that significantly interferes with the
detection model. The model using CTG shows a similar trend,
obtaining optimal performance when the Depth is 1. The large
amount of AST information in CTG models leads to overlooked
dependency relations. In contrast, diffPDG models pay more at-
tention to dependencies, which helps to detect vulnerabilities(as
demonstrated in Section VI-A).

Answer to RQ3: The model using diffPDG performs
significantly better than the model using CTG, indicating
that focusing more on dependencies helps to detect vulnera-
bilities. In addition, direct context provides the most valuable
information for inference.

D. RQ4: Impact of CCT5

Experimental Design: We considered three additional em-
bedding approaches: Word2vec, Word2vec+Expert Features and
CodeT5. We used the Word2vec [18] trained on our dataset to
generate vector representations of statement nodes. Addition-
ally, recent studies [50], [51] show source code vulnerabilities
correlate highly with some specific syntax characteristics. For
instance, in the C language, the usage of pointers and arrays is
more susceptible to attacks. Therefore, extracting keyword fre-
quencies related to pointers from each node’s code snippet would
be highly effective. We concatenated 20 expert features(Code
Statement Metadata (2), Identifier and Literal Features (7),
Control Flow Features (3), Operator Features (4), API Features
(4)) extracted from each code statement node with the vector
generated by Word2vec. We also used CodeT5 [38] to explore
the effectiveness of pre-training models, CodeT?5 is an advanced

6532

TABLE IV
IMPACT OF CCT5S

Embedding | Precision Recall F1 AUC
Word2vec 0.55 040 046 0.80
Word2vec+Expert Features 0.53 044 048 0.79
CodeT5 0.56 049 052 0.80
CCT5 ‘ 0.61 0.51 0.55 0.83

Precision = 0.61 (p-value = 5.36e-4).
Recall = 0.51 (p-value = 2.72e-3).
F1 = 0.55 (p-value = 2.53e-3).

AUC = 0.83 (p-value = 7.36e-4).

pre-trained model in the code domain. We follow the same
training and testing dataset in RQ1 for evaluation.

Results: Table IV shows the results of different embedding
approaches. We observe that CCT5 effectively improves model
performance. Compared to the other embedding approaches,
Precision, Recall, F'1 and AUC improved by 8.9%-15.1%,
4.1%-27.5%, 5.8%-19.6% and 3.8%-5.1% respectively.

Analysis: All results demonstrate that using CCT5 can im-
prove the performance of JIT vulnerability detection. Word2vec
has the worst performance. Adding expert features can add some
vulnerability features, but the effect is still poor. In addition,
the code feature representation generated by training based
on a specific corpus is insufficient and has OOV problems.
In contrast, CodeT5 is able to capture structural and semantic
information of the code and generate more meaningful feature
representations by training on a large-scale code corpus. How-
ever, all the performance metrics of CodeT5 are worse than
CCTS5, which is because CCTS is a pre-trained model for the
domain of code changes. In addition to the code syntactic and
semantic information, it also understands the differences of code
changes [23]. This be attributed to CCTS5 designing specific
pre-training tasks for code changes during the pre-training phase.

Answer to RQ4: CCTS5 can effectively contribute to the
performance of HgtJIT, as it can utilize the domain knowl-
edge in large-scale code change corpus to generate more
meaningful feature representations.

E. RQS5: Effectiveness of HGT

Experimental Design: Due to the outstanding ability in pro-
cessing graph data structures, GNNs have been widely used in
vulnerability detection and have achieved great breakthroughs.
We respectively replaced the HGT model with three famous
GNN models, including GCN (Graph Convolutional Network)
[52], RGCN (Relation Graph Convolutional Network) [53], and
RGAT (Relation Graph Attention Network) [54], to evaluate
the contribution of each model to JIT vulnerability detection.
The experimental dataset is set the same as the experiment of
RQ1. Additionally, We set the hyperparameters according to the
experience of the original paper.

Results: Table V shows the results of different GNNs. The
results demonstrate that utilizing HGT as the model for learning

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 22, NO. 6, NOVEMBER/DECEMBER 2025

TABLE V
EFFECTIVENESS OF HGT

Model | Precision Recall F1 AUC
GCN 0.46 0.46 0.46 0.65

RGCN 0.53 0.46 0.49 0.66
RGAT 0.55 0.48 0.52 0.70
HGT ‘ 0.61 0.51 0.55 0.83

Precision = 0.61 (p-value = 5.36e-4).
Recall = 0.51 (p-value = 2.72e-3).
F1 = 0.55 (p-value = 2.53e-3).

vulnerability features achieves optimal performance. Compared
to the other GNNs, Precision, Recall, F'1 and AUC improved
by 10.9%-32.7%, 6.2%-10.9%, 5.8%-19.6% and 18.6%-27.7%,
respectively.

Analysis: All results demonstrate the effectiveness of HGT in
learning vulnerability features. We observe that the performance
of GCN is poor. The main reason is that the neglection of
edge types leads to the missing of structured code features
(e.g., control- and data-flow). Without accurate control- and
data-flow information, the performance of JIT vulnerability
detection drops. RGCN aggregates node and edge information
through the directed edge. RGAT uses the attention mechanism
on multiple edge types, its precise learning of relations between
nodes makes it achieve higher performance. Though they both
consider inter-node relations, the neglect of node types makes
it difficult to detect vulnerabilities caused by changes. While
HGT can utilize the information of node type and relation
type in heterogeneous graphs more comprehensively based on
meta-relations to identify diversified vulnerabilities and achieve
higher performance.

Answer to RQS5: The model trained with HGT achieves
optimal performance, confirming the effectiveness of HGT
which considers heterogeneous information in learning vul-
nerability features in code changes.

VI. DISCUSSION
A. Case Study

Fig. 7(a) illustrates an instance of vulnerability-contributing
identified by our approach in the Linux kernel. Specifically,
Commit c33blcc® addressed a vulnerability identified as CVE-
2020-25670.° In the function /textttllcp_sock_bind() (at line
1), a reference to a local resource of the NFC protocol stack
was obtained by calling function /textttnfc_llcp_local_get(local)
(at line 4). When memory allocation fails (at line 12) or
SSAP reaches its maximum value (at line 18), the program
returns an error code, but the function /textttnfc_llcp_local_put()
was not invoked, leading to the improper release of the pre-
viously acquired NFC protocol stack local resource, result-
ing in a refcount leak, which is a potential use-after-free

>https://github.com/chipcraft-ic/toolchain-component-linux/commit/
c33blcc62ac05¢c1dbblcdafe2eb66da0lc76ca8d
Shttps:/nvd.nist.gov/vuln/detail/CVE-2020-25670

Authorized licensed use limited to: Nanjing Univ of Post & Telecommunications. Downloaded on November 13,2025 at 08:01:26 UTC from IEEE Xplore. Restrictions apply.

https://github.com/chipcraft-ic/toolchain-component-linux/commit/c33b1cc62ac05c1dbb1cdafe2eb66da01c76ca8d
https://github.com/chipcraft-ic/toolchain-component-linux/commit/c33b1cc62ac05c1dbb1cdafe2eb66da01c76ca8d
https://nvd.nist.gov/vuln/detail/CVE-2020-25670

SUN et al.: HgtJIT: JUST-IN-TIME VULNERABILITY DETECTION BASED ON HETEROGENEOUS GRAPH TRANSFORMER

static int llcp_sock_bind(struct socket *sock, struct sockaddr *addr, int alen)

[--] // omit 40 lines

1lcp_sock->local = nfc_llcp_local_get(local);

1lcp_sock->nfc_protocol = 1lcp_addr.nfc_protocol;

1lcp_sock->service_name_len = min_t(unsigned int,
1lcp_addr.service_name_len,
NFC_LLCP_MAX_SERVICE_NAME);

1lcp_sock->service_name = kmemdup(llcp_addr.service_name,

10 1lcp_sock->service_name_len,

11 GFP_KERNEL);

12 if (!1lcp_sock->service_name) {

13 + nfc_llcp_local_put(llcp_sock->local);

CoNOUsWNE

14 ret = -ENOMEM;
15 goto put_dev;
16 }
17 1lcp_sock->ssap = nfc_llcp_get_sdp_ssap(local, 1llcp_sock);
18 if (llcp_sock->ssap == LLCP_SAP_MAX) {
19 + nfc_1lcp_local_put(llcp_sock->local);
20 kfree(1lcp_sock->service_name);
21 1lcp_sock->service_name = NULL;
22 ret = -EADDRINUSE;
23 goto put_dev;
24 }
25 Lo] // omit 15 lines
26}
(a) Commit ¢33blce to fix CVE-2020-25670 but introduce other
vulnerabilities.
~
| S -=» DDG
| AN
O Keep
@ @ O Add

(b) diffPDG of 7a.

Fig. 7. Example of vulnerability-contributing
(CWE-416) vulnerability. To address this issue, a call to
/textttnfc_llcp_local_put(llcp_sock->local) (at line 13 and line
19) was added to properly release the previously obtained local
resource. However, this fix contributed to a new vulnerability.
Although calling function /textttnfc_llcp_local_put() will re-
lease the relevant memory, /textttllcp_sock->local still retains
references to the released memory addresses. If the same local
resource is assigned to two different sockets, it will result in a
use-after-free vulnerability, identified as CVE-2021-23134.7
Overall, our approach identifies nodes with data dependen-
cies (at line 4) and control dependencies (at line 13 and line
19) with added code by constructing a diffPDG of commit
c33blcc (as shown in Fig. 7(b)). Data dependencies can make
our model aware of the counting issue of memory references
involved in the commit, while control dependencies may make
the model aware that references should be fully released in a
timely manner when the program needs to return. We use the
HGT model that is sensitive to heterogeneous information for
vulnerability feature learning, this combination enables HgtJIT
to provide profound insights into the root causes of vulnerability
introductions, offering robust support for software security. The
application of our approach in the Linux kernel demonstrates its
feasibility and practicality in real-world software development
environments.

B. LLMs for JIT Vulnerability Detection

1) LLM-based Just-in-Time Vulnerability Detection: Recent
advances in large language models (LLMs) have demonstrated

https://nvd.nist.gov/vuln/detail/CVE-2021-23134

Authorized licensed use limited to: Nanjing Univ of Post & Telecommunications. Downloaded on November 13,2025 at 08:01:26 UTC from IEEE Xplore. Restrictions apply.

6533
TABLE VI
PERFORMANCE OF LARGE LANGUAGE MODELS APPLIED TO JIT
VULNERABILITY DETECTION

Model | Precision Recall F1 AUC
GPT-40-mini 0.19 0.79 0.31 0.52
GPT-3.5-turbo 0.19 0.93 0.32 0.51
Llama-4-scout 0.22 0.50 0.31 0.56
DeepSeek-V3 0.22 0.33 0.27 0.50

Hgt]IT ‘ 0.61 0.51 0.55 0.83

Precision = 0.61 (p-value = 5.36e-4).
Recall = 0.93 (p-value = 4.88e-3).

F1 = 0.55 (p-value = 2.53e-3).

AUC = 0.83 (p-value = 7.36e-4).

their strong capabilities across a wide range of software en-
gineering tasks, such as code summarization, program repair,
and bug detection. Motivated by this progress, we conduct a
preliminary exploration of whether LLMs can be applied to the
JIT vulnerability detection task.

To evaluate the effectiveness of LLMs for JIT vulnerabil-
ity detection, we adopt a prompt-based zero-shot classifica-
tion setting. Specifically, we construct a binary classification
task, where an LLM is asked to predict whether a given code
change introduces a vulnerability. The prompt is designed as
follows:

LLM Detection Prompt Template

You are a software security expert with 10 years of
experience in vulnerability analysis. Given a code
change (diff), you need to analyze whether the code
change will introduce potential vulnerabilities. If
there are any potential vulnerabilities, strictly return
1. If not, strictly return 0. No further explanation is
needed. The code is as follows:

-diff:{}

We evaluate four publicly available LLMs: GPT-40-mini [55],
GPT-3.5-turbo [56], Llama-4-Scout [57], and DeepSeek-V3
[58]. For consistency, all models are queried using the same
prompt template and follow the same testing dataset and metrics
in RQI for evaluation.

As shown in Table VI, all LLMs exhibit limited performance
in the JIT vulnerability detection setting. For instance, GPT-40-
mini and GPT-3.5-turbo achieve high recall scores but suffer
from extremely low precision, leading to a large number of
false positives. This result shows that LLMs often treat most
code changes as risky, even when they are safe. This could be
because these models are trained to be cautious in general tasks,
rather than being fine-tuned to understand what actually makes a
code change vulnerable. While Llama-4-Scout performs slightly
better than the others in terms of F1 score and AUC, its results
are still far from what’s needed for real-world use. In particular,
all the AUC scores are close to 0.5, which means the models
can barely tell the difference between truly vulnerable and safe
code. These results suggest that LLMs are not yet suitable for
accurate vulnerability detection during code commit. In contrast,

https://nvd.nist.gov/vuln/detail/CVE-2021-23134

6534

HgtJIT is specifically designed for this task, offers more stable
and reliable predictions.

2) LLM-based Explanation of Detected Vulnerabilities:
While our proposed HgtJIT can assist developers in detecting
vulnerability-contributing commits, it would be more mean-
ingful for developers if we could also offer explainable in-
formation. Existing works have shown the potential of LLMs
in code understanding and security tasks [59], [60]. To in-
vestigate whether LLMs can provide explainable information
for JIT vulnerability detection, we conducted an experiment
focusing on explanation generation. Specifically, we designed
a prompt that asks the LLM to identify the exact location of
the vulnerability in a known vulnerability-contributing commit
and provide a brief explanation. The prompt template is as
follows:

LLM Explanation Prompt Template

You are a software security expert with 10 years of
experience in vulnerability analysis. Given a known
vulnerability contributing commit, you need to ana-
lyze the specific location where the vulnerability was
introduced and provide a concise explanation of the
vulnerability. The code is as follows:

-diff:{}

We selected 50 vulnerability-contributing commits from our
dataset and used four popular LLMs: GPT-40-mini, GPT-3.5-
turbo, Llama-4-Scout, and DeepSeek-V3. To evaluate the qual-
ity of the generated results, we performed a lightweight manual
assessment. Each explanation was independently reviewed by
two experienced researchers in software security. The reviewers
were asked to assess (1) whether the explanation correctly
identified the vulnerable code location, and (2) whether the
explanation provided was coherent and meaningful.

Each explanation was scored as ’useful’ if it both pointed
to vulnerable code and provided a reasonable explanation,
"partially useful” if it only achieved one of the two, and ’not
useful’ otherwise. We found that only 14% of GPT-40-mini
responses and 16% of GPT-3.5-turbo responses were completely
useless, while Llama-4-Scout and DeepSeek-V3 were both 20%
useless.

Interestingly, even with only diff information and no addi-
tional context, the LLMs were often able to locate risky code
changes or give reasonable explanations. In many cases, expla-
nations mentioned issues such as unchecked pointer use, missing
validation, or unsafe API calls, which align well with the true
root causes. For example, in the CVE sample shown in Table VII,
the model explanation focuses on the field 11lcp_sock-
>1ocal and highlights the risk of both null pointer dereference
and use-after-free vulnerabilities. This aligns well with the ac-
tual cause described in the CVE. This suggests that, although
LLMs may struggle with precise vulnerability classification,
they can still serve as useful assistants for explanation. Such
capability can complement models like HgtJIT, which provides
accurate detection results but lacks explanation. Combining
both could be more effective in preventing the introduction of
vulnerabilities.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 22, NO. 6, NOVEMBER/DECEMBER 2025

TABLE VII
LLM-GENERATED EXPLANATION CASE

CVE-2021-23134

CVE Description: Use After Free vulnerability in nfc
sockets in the Linux Kernel before 5.12.4 allows local
attackers to elevate their privileges. In typical configu-
rations, the issue can only be triggered by a privileged
local user with the CAP_NET_RAW capability.

LLM Explanation: The specific vulnerability introduced
appears to stem from potential misuse of resource man-
agement pertaining to 11cp_sock->1ocal. There may
be a risk of both null pointer dereference and use-
after-free issues if this locality is improperly handled
elsewhere in the codebase (e.g., if the object was already
freed or not initialized appropriately). Understanding
how llcp_sock->local is managed throughout the
lifecycle will be crucial to fully assess the impact of
this change.

C. Efficiency of HgtJIT

In terms of inference efficiency, HgtJIT takes approximately
1.2 seconds to classify a single commit. Compared to CodeJIT’s
reported classification time of 0.75 seconds (with FastRGCN),
HgtJIT incurs slightly higher latency due to its more complex
graph structure and multi-relational attention mechanism. We
also observed that increasing the model depth or context scope
moderately increases training time, but does not significantly
affect inference time. For example, extending the transformer
layers from 2 to 4 increases training time by about 1.6 times,
while the average classification time remains stable at around
1.2 seconds per commit.

Overall, the HgtJIT’s inference time is still acceptable for
just-in-time feedback during code commits.

D. Threats to Validity

Threats to Internal Validity in our experiment relates to
two factors. The first threat is the quality of our experimental
datasets, we used the dataset provided by CodeJIT [15] and
conducted further processing, as detailed in Section IV-B. How-
ever, noise label filtering exists artificial deviation. To mitigate
this threat, two postgraduates and one Ph.D. participated in this
process. We evaluate inter-annotator consistency by means of
the kappa coefficient. If two postgraduates disagreed on the
label of the same sample, the sample would be forwarded to
the Ph.D. evaluator for further investigation. The second threat
is the potential mistakes in the implementation of baselines.
To minimize such a threat, we use the original source code of
baselines from the GitHub repositories shared by corresponding
authors and use the same hyperparameters in the original papers.

Threats to External Validity primarily concerned with the
generalizability of our approach. We only conduct our experi-
ments on C/C++ datasets, and thus our experimental results may
not generalizable to other programming languages. However,
the code graph representations we generate are not limited to
specific programming languages, and Joern can perform code
analysis for multiple programming languages such as Java and
Python. As a result, our approach can be easily extended to other
programming languages, an area we aim to explore in our future
research.

Authorized licensed use limited to: Nanjing Univ of Post & Telecommunications. Downloaded on November 13,2025 at 08:01:26 UTC from IEEE Xplore. Restrictions apply.

SUN et al.: HgtJIT: JUST-IN-TIME VULNERABILITY DETECTION BASED ON HETEROGENEOUS GRAPH TRANSFORMER

VII. RELATED WORK

A. JIT Vulnerability Detection Based on Machine Learning

Traditional JIT vulnerability detection techniques typically
use code commit metrics and text features as data inputs, lever-
aging machine learning models to identify potential vulnera-
bilities. For example, Perl et al. [12] introduced a unique ap-
proach that utilizes the ”git blame” command in the Git version
control system to trace modifications made in code commits
that deleted lines associated with known vulnerability-fixing
commits. The most frequently blamed commit in this process
is labeled as a "VCC.” Subsequently, they constructed a dataset
containing these VCCs and trained machine learning models,
such as Support Vector Machines (SVM), on this dataset. Their
model demonstrated outstanding performance in detecting po-
tential vulnerabilities, surpassing some static analysis tools, and
highlighting the potential of machine learning in the field of
vulnerability detection.

Riom et al. [61] replicated Perl et al.’s study and attempted
to further enhance the vulnerability prediction model. They
focused on exploring different feature sets, including those
related to security aspects, such as the number of sizeof” oper-
ators, which are associated with improper sizing of dynamically
allocated buffers. However, it is worth noting that they faced
challenges related to the unavailability of datasets and scripts,
and the original paper did not provide sufficient replication
details, making a strict comparison with Perl et al.’s research
unfeasible.

Additionally, Yang et al. [13] concentrated on web vulnera-
bilities within Mozilla Firefox. They utilized an extensive set
of process and product metrics to provide a high-precision JIT
vulnerability prediction model. While their model excelled in
terms of precision, the recall rate was relatively lower, implying
that in the best configuration, the model might miss some po-
tential vulnerabilities. These studies underscore the significance
of machine learning in JIT vulnerability detection, particularly
when leveraging version control system information to identify
and predict potential vulnerabilities.

Unlike traditional machine learning methods, HgtJIT directly
learns vulnerability features from the changed code. Through
effective graph representation methods and model learning, we
have achieved significant performance improvements.

B. Vulnerability Detection Based on Deep Learning

Vulnerability detection has been a critical concern in the field
of software security. Traditional approaches for vulnerability
detection primarily utilize software metrics, such as code com-
plexity, as features to identify potential vulnerabilities. How-
ever, the manual collection of such software metrics is often
time-consuming and labor-intensive. Consequently, in recent
years, deep learning approaches have made significant strides in
vulnerability detection, offering the capability to automatically
learn patterns of vulnerabilities from historical data.

One prevalent deep learning architecture employed for this
purpose is the Recurrent Neural Network (RNN), especially the
Long Short-Term Memory (LSTM) network, to automatically
acquire semantic and syntactic features from source code. For

Authorized licensed use limited to: Nanjing Univ of Post & Telecommunications. Downloaded on November 13,2025 at 08:01:26 UTC from IEEE Xplore. Restrictions apply.

6535

instance, Russell et al. [10] introduced an RNN architecture
to automatically extract source code features for vulnerability
prediction. Similarly, Dam et al. [6] proposed an LSTM-based
architecture to automatically learn the semantic and syntactic
features of source code. Nevertheless, these RNN approaches
frequently assume that source code is a sequence of tokens,
neglecting the graph structure inherent in source code, such
as the Abstract Syntax Tree, potentially leading to inaccurate
predictions.

In response to this challenge, Li et al. introduced VulDeeP-
ecker [62], an RNN-based model that learns from different
graph properties of source code, such as the Data Dependency
Graph. However, VulDeePecker still learns graph properties
sequentially and does not make full use of GNNs. In recent
years, several studies [63], [64] have begun to employ Graph
Neural Networks to learn the graph properties of source code for
vulnerability prediction. For example, Zhou et al. [11] utilized a
Graph Neural Network to learn four types of graph properties of
source code, including the Abstract Syntax Tree, Control Flow
Graph, Data Flow Graph, and syntactic features. Additionally,
Chakraborty et al. [5] introduced Reveal, a model that utilizes
a Gated Graph Neural Network (GGNN) to learn the graph
properties of source code.

Although several approaches to vulnerability prediction have
been proposed, they have mainly focused on coarser levels of
granularity, such as files, functions, and approaches. Conse-
quently, Li et al. introduced VulDeeLocator [9], which utilizes
program slicing techniques to narrow down the scope of vulner-
ability localization. Furthermore, Li et al. proposed IVDetect
[8], which leverages GNNs for function-level predictions and
utilizes GNNExplainer to identify the sub-graph contributing
the most to predictions. Most recently, Fu et al. presented
LineVul [7], a line-level vulnerability detection approach based
on the Transformer architecture. Building upon I'VDetect, Line-
Vul achieves outstanding performance, marking a significant
breakthrough in the domain of line-level vulnerability detection,
providing enhanced precision for software security.

Recently, LLMs have emerged as a promising paradigm in
vulnerability detection. Some approaches through prompt engi-
neering guide LLMs to perform vulnerability detection either
in zero-shot or few-shot settings. For instance, Zhou et al.
[59] design prompts with task descriptions and vulnerable code
examples to help LLMs better identify vulnerability patterns.
Ni et al. [60] adopt few-shot prompting by providing several
labeled code examples within the context window, allowing
the model to learn from examples. To further enhance LLM
performance, retrieval-augmented generation (RAG) techniques
have been proposed. These approaches retrieve semantically
similar examples or relevant domain knowledge to enrich the
prompt. Zhou et al. [59] use CodeBERT to retrieve similar code
snippets as guidance. Du et al. [65] construct a CVE-based
knowledge base and retrieve functionally relevant vulnerability
information to support detection and suggest potential fixes.

These approaches primarily focus on detecting vulnerabilities
at the file- or function-level. While HgtJIT focuses on the
commit-level, it can swiftly detect vulnerabilities at the time
of code commit, fundamentally reducing the potential risks
associated with VCCs.

6536

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we propose an innovative approach designed
to enhance the performance of JIT vulnerability detection. Our
approach involves the construction of a diffPDG, utilizing CCT5
for graph node embeddings to capture code change information,
and leveraging the HGT to effectively learn vulnerability fea-
tures. Through experiments and performance evaluations, our
approach offers a promising solution in the field of JIT vulner-
ability detection, with the potential for significant performance
improvements in practical applications.

In the future, we aim to build higher-quality and more diverse
datasets, including various projects in different programming
languages, to further enhance the model’s generalization capa-
bilities. In addition, we plan to analyze multi-file commits to
find an effective cross-file representation method to support the
detection of such commits. Furthermore, we intend to collabo-
rate with industry partners to integrate HgtJIT into large-scale
codebases, enabling us to evaluate its practical effectiveness and
refine it based on real-world deployment feedback.

REFERENCES

[1] Flawfinder,
FlawFinder

[2] Checkmarx, 2024. [Online]. Available: https://www.checkmarx.com

[3] Infer, 2024. [Online]. Available: https://fbinfer.com

[4] S. Cao, X. Sun, L. Bo, R. Wu, B. Li, and C. Tao, “MVD: Memory-related
vulnerability detection based on flow-sensitive graph neural networks,” in
Proc. 44th IEEE/ACM Int. Conf. Softw. Eng., 2022, pp. 1456-1468.

[5] S. Chakraborty, R. Krishna, Y. Ding, and B. Ray, “Deep learning based
vulnerability detection: Are we there yet?,” IEEE Trans. Softw. Eng.,
vol. 48, no. 9, pp. 3280-3296, Sep. 2022.

[6] H. K. Dam, T. Tran, T. Pham, S. W. Ng, J. Grundy, and A. Ghose, “Au-
tomatic feature learning for predicting vulnerable software components,”
IEEE Trans. Softw. Eng., vol. 47, no. 1, pp. 67-85, Jan. 2021.

[7] M. Fu and C. Tantithamthavorn, “LineVul: A transformer-based line-level
vulnerability prediction,” in Proc. 19th IEEE/ACM Int. Conf. Mining Softw.
Repositories, 2022, pp. 608-620.

[8] Y. Li, S. Wang, and T. N. Nguyen, “Vulnerability detection with fine-
grained interpretations,” in Proc. 29th ACM Joint Eur. Softw. Eng. Conf.
Symp. Foundations Softw. Eng., 2021, pp. 292-303.

[9] Z. Li, D. Zou, S. Xu, Z. Chen, Y. Zhu, and H. Jin, “VulDeeLocator:
A deep learning-based fine-grained vulnerability detector,” IEEE Trans.
Dependable Secur. Comput., vol. 19,no.4, pp. 2821-2837, Jul./Aug. 2022.

[10] R. L. Russell et al., “Automated vulnerability detection in source code
using deep representation learning,” in Proc. 17th IEEE Int. Conf. Mach.
Learn. Appl., 2018, pp. 757-762.

[11] Y. Zhou, S. Liu, J. K. Siow, X. Du, and Y. Liu, “Devign: Effective
vulnerability identification by learning comprehensive program semantics
via graph neural networks,” in Proc. 33rd Annu. Conf. Neural Inf. Process.
Syst., 2019, pp. 10197-10207.

[12] H.Perletal., “VCCFinder: Finding potential vulnerabilities in open-source
projects to assist code audits,” in Proc. 22nd ACM SIGSAC Conf. Comput.
Commun. Secur., 2015, pp. 426-437.

[13] L. Yang, X. Li, and Y. Yu, “VulDigger: A just-in-time and cost-aware tool
for digging vulnerability-contributing changes,” in Proc. 18th IEEE Glob.
Commun. Conf., 2017, pp. 1-7.

[14] E Lomio, E. Iannone, A. D. Lucia, F. Palomba, and V. Lenarduzzi, “Just-
in-time software vulnerability detection: Are we there yet,” J. Syst. Softw.,
vol. 188, 2022, Art. no. 111283.

[15] S. Nguyen, T. Nguyen, T. T. Vu, T. Do, K. Ngo, and H. D. Vo, “Code-
centric learning-based just-in-time vulnerability detection,” J. Syst. Softw.,
vol. 214, 2024, Art. no. 112014.

[16] F. Yamaguchi, N. Golde, D. Arp, and K. Rieck, “Modeling and discovering
vulnerabilities with code property graphs,” in Proc. 35th IEEE Symp. Secur.
Privacy, 2014, pp. 590-604.

2024. [Online]. Available: http://www.dwheeler.com/

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 22, NO. 6, NOVEMBER/DECEMBER 2025

[17] X. Wen, Y. Chen, C. Gao, H. Zhang, J. M. Zhang, and Q. Liao, “Vulner-
ability detection with graph simplification and enhanced graph represen-
tation learning,” in Proc. 45th IEEE/ACM Int. Conf. Softw. Eng., 2023,
pp. 2275-2286.

[18] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation
of word representations in vector space,” in Proc. Ist Int. Conf. Learn.
Representations, 2013, pp. 1-12.

[19] S. Cao et al., “Learning to detect memory-related vulnerabilities,” ACM
Trans. Softw. Eng. Methodol., vol. 33, no. 2, pp. 43:1-43:35, 2024.

[20] Z.Hu, Y. Dong, K. Wang, and Y. Sun, “Heterogeneous graph transformer,”
in Proc. 29th Web Conf., 2020, pp. 2704-2710.

[21] K. Zhang, W. Wang, H. Zhang, G. Li, and Z. Jin, “Learning to represent
programs with heterogeneous graphs,” in Proc. 30th IEEE/ACM Int. Conf.
Prog. Comprehension, 2022, pp. 378-389.

[22] J. Ferrante, K. J. Ottenstein, and J. D. Warren, “The program dependence
graph and its use in optimization,” ACM Trans. Program. Lang. Syst.,
vol. 9, no. 3, pp. 319-349, 1987.

[23] B. Lin, S. Wang, Z. Liu, Y. Liu, X. Xia, and X. Mao, “CCT5: A code-
change-oriented pre-trained model,” in Proc. 31st ACM Joint Eur. Softw.
Eng. Conf. Symp. Foundations Softw. Eng., 2023, pp. 1509-1521.

[24] T. Hoang, H. K. Dam, Y. Kamei, D. Lo, and N. Ubayashi, “DeepJIT: An
end-to-end deep learning framework for just-in-time defect prediction,” in
Proc. 16th Int. Conf. Mining Softw. Repositories, 2019, pp. 34—45.

[25] T. Hoang, H.J. Kang, D. Lo, and J. Lawall, “CC2Vec: Distributed repre-
sentations of code changes,” in Proc. 42nd Int. Conf. Softw. Eng., Seoul,
2020, pp. 518-529.

[26] S. Mclntosh and Y. Kamei, “Are fix-inducing changes a moving target?
A longitudinal case study of just-in-time defect prediction,” IEEE Trans.
Softw. Eng., vol. 44, no. 5, pp. 412-428, May 2018.

[27] R. C. Lozoya, A. Baumann, A. Sabetta, and M. Bezzi, “Commit2vec:
Learning distributed representations of code changes,” SN Comput. Sci.,
vol. 2, no. 3, 2021, Art. no. 150.

[28] Z. Liu, Z. Tang, X. Xia, and X. Yang, “CCRep: Learning code change
representations via pre-trained code model and query back,” in Proc. 45th
IEEE/ACM Int. Conf. Softw. Eng., 2023, pp. 17-29.

[29] Z.Lietal., “Automating code review activities by large-scale pre-training,”
in Proc. 30th ACM Joint Eur. Softw. Eng. Conf. Symp. Foundations Softw.
Eng., 2022, pp. 1035-1047.

[30] J. Zhang, S. Panthaplackel, P. Nie, J. J. Li, and M. Gligoric, “CoditT5:
Pretraining for source code and natural language editing,” in Proc. 37th
IEEE/ACM Int. Conf. Automated Softw. Eng., 2022, pp. 22:1-22:12.

[31] F. Zhang, B. Chen, Y. Zhao, and X. Peng, “Slice-based code change
representation learning,” in Proc. 30th IEEE Int. Conf. Softw. Anal. Evol.
Reengineering, 2023, pp. 319-330.

[32] J. Dong et al., “FIRA: Fine-grained graph-based code change representa-
tion for automated commit message generation,” in Proc. 44th IEEE/ACM
44th Int. Conf. Softw. Eng., 2022, pp. 970-981.

[33] Z. Liu, X. Xia, A. E. Hassan, D. Lo, Z. Xing, and X. Wang, “Neural-
machine-translation-based commit message generation: How far are
we,” in Proc. 33rd ACM/IEEE Int. Conf. Automated Softw. Eng., 2018,
pp. 373-384.

[34] C.Pornprasit and C. Tantithamthavorn, “JITLine: A simpler, better, faster,
finer-grained just-in-time defect prediction,” in Proc. 18th IEEE/ACM Int.
Conf. Mining Softw., 2021, pp. 369-379.

[35] C. Ni, W. Wang, K. Yang, X. Xia, K. Liu, and D. Lo, “The best of
both worlds: Integrating semantic features with expert features for defect
prediction and localization,” in Proc. 30th ACM Joint Eur. Softw. Eng.
Conf. Symp. Foundations Softw. Eng., 2022, pp. 672-683.

[36] B. Lin, S. Wang, Z. Liu, X. Xia, and X. Mao, “Predictive comment
updating with heuristics and AST-path-based neural learning: A two-phase
approach,” IEEE Trans. Softw. Eng., vol. 49, no. 4, pp. 1640-1660, Apr.
2023.

[37] C. Raffel et al., “Exploring the limits of transfer learning with a unified
text-to-text transformer,” J. Mach. Learn. Res., vol. 21, pp. 140:1-140:67,
2020.

[38] Y. Wang, W. Wang, S. R. Joty, and S. C. H. Hoi, “CodeT5: Identifier-
aware unified pre-trained encoder-decoder models for code understanding
and generation,” in Proc. 26th Conf. Empirical Methods Natural Lang.
Process., 2021, pp. 8696-8708.

[39] X. Mei, X. Cai, L. Yang, and N. Wang, “Relation-aware heterogeneous
graph transformer based drug repurposing,” Expert Syst. Appl., vol. 190,
2022, Art. no. 116165.

[40] J. Cai, B. Li, J. Zhang, X. Sun, and B. Chen, “Combine sliced joint graph
with graph neural networks for smart contract vulnerability detection,” J.
Syst. Softw., vol. 195, 2023, Art. no. 111550.

Authorized licensed use limited to: Nanjing Univ of Post & Telecommunications. Downloaded on November 13,2025 at 08:01:26 UTC from IEEE Xplore. Restrictions apply.

http://www.dwheeler.com/FlawFinder
http://www.dwheeler.com/FlawFinder
https://www.checkmarx.com
https://fbinfer.com

SUN et al.: HgtJIT: JUST-IN-TIME VULNERABILITY DETECTION BASED ON HETEROGENEOUS GRAPH TRANSFORMER 6537

[41]
[42]
[43]

[44]

[45]

[46]

[47]

[48]
[49]
[50]
[51]
[52]
[53]
[54]
[55]
[56]
[57

[58]
[59]

[60]

[61]

[62]

[63]

[64]

[65]

Z. Feng et al., “CodeBERT: A pre-trained model for programming and
natural languages,” 2020, arXiv: 2002.08155.

Y. Liu et al., “RoBERTa: A robustly optimized BERT pretraining ap-
proach,” 2019, arXiv: 1907.11692.

A. Vaswani et al., “Attention is all you need,” in Proc. 31st Annu. Conf.
Neural Inf. Process. Syst., 2017, pp. 5998-6008.

Y. Li, D. Tarlow, M. Brockschmidt, and R. S. Zemel, “Gated graph
sequence neural networks,” in Proc. 4th Int. Conf. Learn. Representations,
2016.

J. Sliwerski, T. Zimmermann, and A. Zeller, “When do changes in-
duce fixes,” ACM SIGSOFT Softw. Eng. Notes, vol. 30, no. 4, pp. 1-5,
2005.

J. R. Landis and G. G. Koch, “The measurement of observer agreement
for categorical data,” Biometrics, vol. 33, pp. 159-174, 1977.

M. Pendleton, R. Garcia-Lebron, J. Cho, and S. Xu, “A survey on systems
security metrics,” ACM Comput. Surv., vol. 49, no. 4, pp. 62:1-62:35,
2017.

I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,” in
Proc. 7th Int. Conf. Learn. Representations, 2019, pp. 1-18.

Y. Tian, Y. Zhang, K. Stol, L. Jiang, and H. Liu, “What makes a good
commit message?,” in Proc. 44th IEEE/ACM 44th Int. Conf. Softw. Eng.,
2022, pp. 2389-2401.

X. Wang, S. Wang, K. Sun, A. L. Batcheller, and S. Jajodia, “A machine
learning approach to classify security patches into vulnerability types,” in
Proc. 8th IEEE Conf. Commun. Netw. Secur., 2020, pp. 1-9.
Z.Li,D.Zou, S. Xu, H. Jin, Y. Zhu, and Z. Chen, “SySeVR: A framework
for using deep learning to detect software vulnerabilities,” IEEE Trans.
Dependable Secur. Comput., vol. 19, no. 4, pp. 2244-2258, Jul./Aug. 2022.
T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in Proc. 5th Int. Conf. Learn. Representations,
2017, pp. 1-14.

M. S. Schlichtkrull, T. N. Kipf, P. Bloem, R. van den Berg, I. Titov, and
M. Welling, “Modeling relational data with graph convolutional networks,”
2017, arXiv: 1703.06103.

D. Busbridge, D. Sherburn, P. Cavallo, and N. Y. Hammerla, “Relational
graph attention networks,” 2019, arXiv: 1904.05811.

GPT-40, 2025. [Online]. Available: https://openai.com/

ChatGPT, 2025. [Online]. Available: https://chatgpt.com/

Llama, 2025. [Online]. Available: https://www.llama.com/

DeepSeek, 2025. [Online]. Available: https://chat.deepseek.com/
X.Zhou, T. Zhang, and D. Lo, “Large language model for vulnerability de-
tection: Emerging results and future directions,” in Proc. 46th ACM/IEEE
44th Int. Conf. Softw. Eng.: New Ideas Emerg. Results, 2024, pp. 47-51.
C. Ni, L. Shen, X. Xu, X. Yin, and S. Wang, “Learning-based models for
vulnerability detection: An extensive study,” 2024, arXiv:2408.07526.
T.Riom, A. D. Sawadogo, K. Allix, T. F. Bissyandé, N. Moha, and J. Klein,
“Revisiting the VCCFinder approach for the identification of vulnerability-
contributing commits,” Empir. Softw. Eng., vol. 26, no. 3, 2021, Art. no. 46.
Z.Lietal.,“VulDeePecker: A deep learning-based system for vulnerability
detection,” in Proc. 25th Annu. Netw. Distrib. System Secur. Symp., 2018,
pp. 1-15.

S. Cao, X. Sun, L. Bo, Y. Wei, and B. Li, “BGNN4VD: Constructing
bidirectional graph neural-network for vulnerability detection,” Inf. Softw.
Technol., vol. 136, 2021, Art. no. 106576.

S.Caoetal., “Coca: Improving and explaining graph neural network-based
vulnerability detection systems,” in Proc. 46th IEEE/ACM Int. Conf. Softw.
Eng., 2024, pp. 155:1-155: 13.

X.Duetal., “VUL-rag: Enhancing LLM-based vulnerability detection via
knowledge-level RAG,” 2024, arXiv:2406.11147.

Xiaobing Sun (Member, IEEE) received the BS de-
gree in computer science and technology from the
Jiangsu University of Science and Technology, Zhen-
jiang, China, in 2007, and the PhD degree in computer
science and technology from the School of Computer
Science & Engineering, Southeast University, Nan-
jing, China, in 2012. He is a professor with the School
of Information Engineering, Yangzhou University,
Yangzhou, China. He has been authorized more than
20 patents, and authored and co-authored more than
80 papers in referred international journals and con-

ferences. His research interests include software maintenance and evolution,
software repository mining, and intelligence analysis, etc.

Authorized licensed use limited to: Nanjing Univ of Post & Telecommunications. Downloaded on November 13,2025 at 08:01:26 UTC from IEEE Xplore. Restrictions apply.

Mingxuan Zhou received the BE degree in com-
puter science and technology from the Yangzhou
University, Yangzhou, China, in 2021. He is currently
working toward the MSc degree with the School
of Information Engineering, Yangzhou University,
Yangzhou, China. His research interests include soft-
ware security and deep learning.

Sicong Cao received the BE degree in software en-
gineering from the Nanjing Institute of Technology,
Nanjing, China, in 2019. He is currently working
toward the PhD degree in software engineering with
the School of Information Engineering, Yangzhou
University, Yangzhou, China. His research interests
include software security and deep learning. Some of
his publications have been published in the top-tier
conferences (e.g., ICSE, S&P, USENIX Security)
and journals (e.g., ACM Transactions on Software
Engineering and Methodology, IEEE Transactions on
Industrial Informatics).

Xiaoxue Wu received the PhD degree from North-
western Polytechnical University, Xi’an, China, in
2021. She is currently an associate professor with
the School of Information Engineering, Yangzhou
University, Yangzhou, China. Her research interests
include software testing and software security, etc.

Lili Bo received the PhD degree from the School of
Computer Science and Technology, China University
of Mining and Technology, in 2019. She is currently
an associate professor with the School of Information
Engineering, Yangzhou University, Yangzhou, China.
Her research interests include software testing and
software security, etc.

Di Wu (Senior Member, IEEE) is a lecturer with
the School of Mathematics, Physics, and Computing,
University of Southern Queensland and a visiting
fellow atwith the School of Computer Science, Uni-
versity of Technology Sydney. Prior to that, he was a
researcher with the Australian Institute for Machine
Learning (AIML) & School of Computer Science,
University of Adelaide, Adelaide, Australia. Previous
to this, he was an associate research fellow, Artificial
Intelligence with Deakin Blockchain Innovation Lab,
School of Information Technology, Deakin Univer-
sity, Melbourne, Australia, and worked as a postdoc fellow with the School of
Computer Science, University of Technology Sydney (UTS), Sydney, Australia.
He has more than 10 years of experience in research & development and
academia. He has substantial industry experience in large project management,
software development, and large system maintenance experience while working
on various projects at China Telecom (Global 500), Shanghai. His research area
focuses on applying Al on edge devices and Al applications. He has published
more than 20 papers in refereed books, conferences, and journals. He has served
as a special session chair for IJCNN. He also serves as a reviewer for many
high-quality academic conferences and journals, such as CoRL, PR, TETCI,
and so on.

https://openai.com/
https://chatgpt.com/
https://www.llama.com/
https://chat.deepseek.com/

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 22, NO. 6, NOVEMBER/DECEMBER 2025

Bin Li received the BS degree in computer software
from Fudan University, Shanghai, China, in 1986, the
MS and PhD degrees in computer application technol-
ogy from the Nanjing University of Aeronautics and
Astronautics, Nanjing, China, in 1993 and 2001, re-
spectively. He is currently a professor with Yangzhou
University, Yangzhou, China. He has authored and
co-authored more than 100 journal and conference pa-
pers. His main research interests include knowledge
graph, software data mining, and multiagent system.

Yang Xiang (Fellow, IEEE) received the PhD degree
in computer science from Deakin University, Bur-
wood, VIC, Australia, in 2007. He is currently a full
professor and the dean of Digital Research, Swin-
burne University of Technology, Hawthorn, VIC,
Australia. In the past 20 years, he has authored or
coauthored more than 300 research papers in many
international journals and conferences. His research
focuses on cyber security, which covers network
and system security, data analytics, distributed sys-
tems, and networking. He is the editor-in-chief of the
Springer Briefs on Cyber Security Systems and Networks. He is an associate
editor for /IEEE Transactions on Dependable and Secure Computing, IEEE
Internet of Things Journal, and ACM Computing Surveys. He is the Coordinator
of the Asia for IEEE Computer Society Technical Committee on Distributed
Processing (TCDP), and the Chair of the Australia and New Zealand, IEEE
Blockchain Technical Community.

Authorized licensed use limited to: Nanjing Univ of Post & Telecommunications. Downloaded on November 13,2025 at 08:01:26 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

