
GrasP: Graph-to-Sequence Learning for Automated
Program Repair

Ben Tang
School of Information Engineering

Yangzhou University
Yangzhou, China

853082540tb@gmail.com

Bin Li
School of Information Engineering

Yangzhou University
Yangzhou, China

lb@yzu.edu.cn

Lili Bo
School of Information Engineering

Yangzhou University
Yangzhou, China

lilibo@yzu.edu.cn

Xiaoxue Wu
School of Information Engineering

Yangzhou University
Yangzhou, China

xiaoxuewu@yzu.edu.cn

Sicong Cao
School of Information Engineering

Yangzhou University
Yangzhou, China

MX120190439@yzu.edu.cn

Xiaobing Sun
School of Information Engineering

Yangzhou University
Yangzhou, China

xbsun@yzu.edu.cn

Abstract—Many deep learning models, for example, neural
machine translation (NMT) models, have been developed for
Automated Program Repair (APR). Due to the advantages of
NMT model’s strong generalization ability and less manual in-
tervention, NMT-based methods perform well in APR. However,
previous NMT-based APR approaches regard a code snippet as a
sequence of tokens, which ignores the inherent structure of code.

In this paper, we propose a novel end-to-end approach with
Graph-to-Sequence learning, GrasP, to generate patches for
buggy methods. To better represent the buggy method, we use
a graph based on abstract syntax tree (AST) to represent the
source code. In order to learn complex graph representation, we
introduce the attention-based encoder-decoder model for graph-
to-sequence learning. The empirical evaluation on the popular
benchmark Defects4J shows that GrasP can generate compilable
patches for 75 bugs, of which 34 patches are correct.

Index Terms—Automated program repair, Graph-to-Sequence
learning, abstract syntax tree

I. INTRODUCTION

Software bugs are inevitable in the process of software

development, and developers need to spend considerable effort

to fix them [1]–[3]. To improve software reliability and reduce

development cost, many automated program repair (APR)

techniques are proposed to repair buggy programs automat-

ically [4]–[7].

Since APR task can be treated as translating buggy code

into correct code, the NMT model, a general model in Natural

Language Processing (NLP) and mainly used for translation

tasks, can be applied to APR. NMT-based approaches [8]–

[10] automatically learn abstract fix patterns of programs

from historical bug fixing data to capture relations between

buggy statements and fixed statements. Moreover, they have

good generalization because these models do not rely on

programming languages but only related to the historical data

used for training.

Although NMT-based APR approaches have shown their

advantages over traditional approaches, code representations

employed by some NMT-based approaches [8]–[10] still can-

not retain the rich syntax and semantics information [11]

since they tend to represent source code as sequences and

apply the sequence-to-sequence model to generate patches.

The sequence representation of these approaches ignores the

implicit semantics in source code [11]. In addition, it is

difficult to apply sequence-to-sequence models in APR since

these models perform not well when the input sequence is

too long. Some approaches try to limit the length of the

input sequence [8] or the range of context [9] to optimize

the sequence representation. Such attempts are still inade-

quate because they cannot ensure that the sequence is short

enough while retaining enough information. For example,

CoCoNut [10] separates a buggy line and its context, and

then input them to different encoders to get the intermediate

representation. These approaches [9], [10] based on optimized

sequence representation work well for single-line bugs but may

have trouble when it comes to bugs that caused by multiple

buggy lines in one method because it can only treat these

discontinuous buggy lines as multiple single-line bugs. This

may lose relations between buggy lines.

Furthermore, as sequence-to-sequence models can only han-

dle sequence, existing approaches convert the graph into a

sequence and then use the sequence-to-sequence model for

training [12]. This may ignore the structural information in

the source code. Therefore, how to enable the NMT model to

learn more complex information from code representations is

a challenging problem yet to be solved.

To overcome the above discussed challenges, we propose a

novel end-to-end NMT-based APR approach with Graph-to-

Sequence learning, called GrasP (Graph-to-Sequence Learn-

ing for Automated Program Repair). First, we use a graph

representation based on Abstract Syntax Tree (AST) to repre-

sent source code. Since a method retains as much syntax and

semantic information as possible with a certain code length,

we choose the method-level as the granularity of translation.

819

2021 IEEE 21st International Conference on Software Quality, Reliability and Security (QRS)

2693-9177/21/$31.00 ©2021 IEEE
DOI 10.1109/QRS54544.2021.00091

20
21

 IE
EE

 2
1s

t I
nt

er
na

tio
na

l C
on

fe
re

nc
e

on
 S

of
tw

ar
e

Q
ua

lit
y,

 R
el

ia
bi

lit
y

an
d

Se
cu

rit
y

(Q
RS

) |
 9

78
-1

-6
65

4-
58

13
-9

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
 D

O
I:

10
.1

10
9/

Q
RS

54
54

4.
20

21
.0

00
91

Authorized licensed use limited to: YANGZHOU UNIVERSITY. Downloaded on March 07,2023 at 05:13:39 UTC from IEEE Xplore. Restrictions apply.

Then, we introduce a general attention-based neural network

model to learn the graph representation of source code and

generate patches. Unlike the traditional sequence-to-sequence

model, Graph-to-Sequence model uses a graph encoder instead

of the sequence encoder to generate intermediate representa-

tions so that it can help learn complex information from graphs

and generate patches.

We conduct an empirical study on GrasP. First, we extracted
thousands of buggy methods from real-world open-source

projects and train GrasP to predict correct versions of these

bugs. Second, we evaluated our approach in Defects4J [13],

a dataset of reproducible bugs seen as a standard evaluation

benchmark for automated program repair.

The main contributions of our work are as follows:

• We represented the buggy method as a graph to retain

more structural information, and present a novel Graph-

to-Sequence learning to deal with the input graph, over-

coming the limitation of information missing.

• We evaluated our approach on Defects4J dataset and

1100 buggy methods extracted from real-world open-

source projects, respectively. For the evaluation bench-

mark dataset Defects4J, GrasP generates compilable

patches for 75 bugs, of them 34 are correct. For 1100

methods from open-source projects, GrasP’s prediction
can achieve 16.1% accuracy on average.

II. MOTIVATION

In this section, we use an example of real-world bug in

Defects4J [13] to illustrate our motivation. Fig. 1 shows a

buggy method appendTo() fixed in project Closure. Three
discontinuous parts of buggy lines are found in appendTo().
For this method, the fix version modifies four lines. There

are two main problems in this buggy method, i.e., conditional

expression error and method invocation expression error. To

fix this buggy method, three method invocation expressions

(out.append()) should be modified and one conditional

expression should be replaced.

− ou t . append (l i n eVa l u e) ;
+ ou t . append (S t r i n g . va lueOf (
+ o r i g i n a l P o s i t i o n . getLineNumber ())) ;

ou t . append (” , ”) ;
− ou t . append (S t r i n g . va lueOf (
− m. o r i g i n a l P o s i t i o n . g e t C h a r a c t e r I n d e x ())) ;
+ ou t . append (S t r i n g . va lueOf (
+ o r i g i n a l P o s i t i o n . g e t C h a r a c t e r I n d e x ()))
− i f (m. o r i g i n a lName != n u l l) {
+ i f (o r i g i n a lName != n u l l) {

ou t . append (” , ”) ;
− ou t . append (e s c a p e S t r i n g (m. o r i g i n a lName)) ;
+ ou t . append (o r i g i n a lName) ;

}

Fig. 1. A real patch for method appendTo in Defects4J

From this example, we can draw the following observations:

Observation 1. Not all buggy methods involve only one

buggy line modification. In our motivating example in Fig.1,

there are three discontinuous lines in this method that should

Fig. 2. Partial AST parsed by Closure 148

be revised. In some approaches [9], [10] which aimed at fixing

single-line bugs, these buggy lines are processed indepen-

dently and each buggy line is input into the NMT model with

its context (the entire method). As a result, when the first

line is treated as a buggy line by the model, the other three

buggy lines are learned as its context. In fact, context should

be a collection of statements that do not have bugs but have

an impact on buggy lines [9]. The NMT model may falsely

consider these buggy lines as lines with no need to change.

Therefore, a model that can only fix single-line bugs have

trouble in handling bugs caused by multiple buggy lines in

one method.

Observation 2. In buggy methods with multiple buggy

lines, semantically related buggy lines may be discontinuous.

In our motivating example in Fig.1, the buggy statement in if
block is influenced by the conditional expression above, but

there is a certain distance between two buggy lines. Traditional

sequence-to-sequence model can not perform well in capturing

the long-term dependence of the sequence. Therefore, semanti-

cally related statements should be connected when the method

is transformed into suitable code representation forms.

Based on the above two observations, we propose our ap-

proach with the following key ideas. First, instead of construct-

ing the representation around one buggy line, we use a graph

based on Abstract Syntax Tree (AST) to represent the entire

method to retain the complete semantics and syntax infor-

mation. Compared with the sequence representation method,

using AST to represent the code can make semantically related

lines more closer. That is, graph representation can better learn

the relations between possibly related lines. Fig. 2 shows a

part of AST parsed by the method appendTo() in Fig. 1.

As shown in Fig. 2, there are only a few hops between

the two buggy method invocation statements. However, some

AST nodes (e.g., Block, MethodInvocation) are abstract and

820

Authorized licensed use limited to: YANGZHOU UNIVERSITY. Downloaded on March 07,2023 at 05:13:39 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. Framework of Graph2Seq model

represent properties of the subtrees. They do not belong to

the original code. We take some measures to deal with these

virtual nodes, such as ExpressionStatement. Second, in order

to retain structural information of AST, we use a graphic

architecture design to deal with the input graph. Traditional

approaches [14] directly convert complex structured graph

data into sequences. The conversion process may cause the

problem of structure information loss. We introduce Graph-

to-Sequence learning by replacing the sequence encoder with

a graph encoder.

III. BACKGROUND AND RELATED WORK

Graph-to-Sequence learning. Graph-to-Sequence learning
is proposed to deal with input represented as graphs and learn

the conversion of graphs to sequences. The Graph2Seq [12]

model is one of the neural network models for graph-to-

sequence learning. Fig. 3 shows the details of the Graph2Seq

model. The Graph2Seq model includes a graph encoder, a

sequence decoder and node attention mechanisms. The Graph

Encoder first generates the embedding representation of the

node, and then constructs the embedding of the entire graph

based on the learned node embeddings. Then, the sequence

decoder takes both graph embedding and node embedding as

input, and focuses attention on the node embedding while

generating the sequence. Graph2Seq replaces the sequence

encoder with a graph encoder. The graph encoder aims to

learn node embeddings, then reconstitutes them into a graph

embedding and input the graph embedding into the decoder.

Deep Learning for APR. Tufano et al. [8] first applied

Neural Machine Translation (NMT) technology in natural

language processing(NLP) to predict and repair bugs. They

regarded APR as a translation task to translate buggy programs

into fixed programs. SequenceR [9] was another NMT-based

approach proposed to repair single-line bugs written in Java

Programming Language. It introduced copy mechanism [15],

which is simply described as the ability to directly copy the

input data of the model to the output. CoCoNut [10] adopted

a novel code representation to represent buggy source code

and its surrounding context separately. In this architecture, two

separate decoders were used to process buggy lines and context

lines respectively so that long term relations between tokens

can be extracted. CURE [16] pre-trained a programming

language model to learn developer-like source code before

the APR task and then used a new search strategy to find

more correct fixes. In addition to representing source code

as a sequence, DLFix [17] treated source code as a parse

tree. DLFix is a two-layer model that the first layer learns the

context of the buggy line and its result is an extra weighting

input for the second layer designed for this buggy line. The

most related NMT-based work to GrasP is SequenceR [9]. The

main differences are that GrasP represents methods as graphs

and takes Graph-to-Sequence learning instead of sequence-to-

sequence learning.

IV. OUR APPROACH

A. Overview

Fig. 4 shows the overview of our end-to-end program pro-

gram repair approach, GrasP. GrasP consists of four steps: 1)

preprocessing, 2) graph construction and method tokenization,

3) model training and patch inference, and 4) validation.

In the first step, we search for all changed methods and

extract buggy-fixed method pairs to construct Bug-Fixed Pairs

(BFP). In the second step, for each BFP, we construct an

AST-based graph to represent the buggy method and tokenize

its corresponding fixed version. After that, we transfer the

processed BFP to the Graph2Seq model for training and then

use the well-trained model to generate candidate patches for

new buggy methods. Finally, we validate the correctness of

candidate patches and select plausible patches for the buggy

method.

B. Preprocessing

The goal of preprocessing is to extract pairs of buggy meth-

ods and their corresponding fixed versions to build the dataset.

We built our Java dataset from open-source communities and

published work [17]. Different from approaches that represent

code as sequences, our approach has stricter requirements on

the format of the data. Since we need to parse source code

821

Authorized licensed use limited to: YANGZHOU UNIVERSITY. Downloaded on March 07,2023 at 05:13:39 UTC from IEEE Xplore. Restrictions apply.

Fig. 4. Overview of GrasP

into a complete graph, we should ensure the integrity and

compilability of the method (compilation unit that meets the

requirements of the compiler). Some measures are used to

filter the dataset. First, we removed methods that are duplicate

and do not conform to the grammatical specification. Second,

we removed extra long methods with more than 400 tokens

because it is hard to generate correct patches for long methods.

80 percents of the methods in our dataset are less than 400 in

length. Third, we removed all the comments and replaced the

spaces and newline marks between tokens with a single space.

After preprocessing, we got 12,000 buggy-fixed method

pairs for training. These pairs conform to grammatical speci-

fications and can be transformed into trees with Gumtree [18].

C. Graph Construction and Tokenization

In this step, we construct an AST-based graph for buggy

methods and tokenize the corresponding fixed method.

The abstract syntax tree (AST) is a tree representation of the

abstract syntax structure of the source code. We use Gumtree
to generate AST for each method. Gumtree is an open source

framework which can handle source code as AST. To use

Gumtree, we add a class declaration for each method to pass

compilation and delete the declaration node after constructing

AST. Since our task is a text generation task, each node should

be represented by text. For syntax nodes that do not exist in

source code, we use TypeLabel (an attribute of node in AST

generated by Gumtree, e.g., ExpressionStatement). For other
nodes, we directly use the text in source code to represent

them.

Then, we make a few modifications to the generated AST. In

our generation task, some virtual nodes (e.g., ExpressionState-
ment) are not involved in the translation process. As shown

in Fig. 3, each ExpressionStatement node has only one child.

ExpressionStatement has no practical meaning, and it shows

that the subtree is an expression statement. These nodes are

redundant nodes for our task because our model does not

generate these virtual tokens during the inference process. We

reconstruct the directivity of some edges and remove virtual

nodes to make the connection between actual nodes closer. As

an example in Fig. 3, we removed ExpressionStatement nodes
and connected Block node with MethodInvocation nodes. For

similar nodes that do not affect the AST structure, we will

take the same action referring to the control flow rules. We

mainly process Conditions and If Statements, For Loop and
While Loop, and Switch.

822

Authorized licensed use limited to: YANGZHOU UNIVERSITY. Downloaded on March 07,2023 at 05:13:39 UTC from IEEE Xplore. Restrictions apply.

After constructing modified AST graphs for buggy methods,

we separate its fixed version into tokens according to gram-

matical rules. Then, the constructed graph and the tokenized

sequence are inputted into the Graph2Seq model for training.

D. Model Training and Patch Inference

In this step, we need to input the graph and corresponding

sequence generated in the previous step and then generate

patches based on the trained Graph-to-Sequence model. In

order to deal with the graph representation, we chose to use

the open source model Graph2Seq [12].

In the training stage, the Graph2Seq model can learn the

best conversion from buggy graphs to fixed sequences by

continuously adjusting the combination of weights. After

continuous adjustments, the Graph2Seq model can predict

sequences based on the best combination of weights.

Graph Encoder. The Graph Encoder is a graph-based

neural network to convert the input graph to a sequence of

vectors. For the input AST-based graph, the Graph Encoder

generates node embedding for each node based on the text

attribute, and then constructs graph embeddings based on the

learned node embeddings. These vectors are later used to

generate patches in the form of sequence.

Sequence Decoder. The Sequence Decoder is to decode

the target sequence from vectors generated by the Graph

Encoder. The Decoder is based on Recurrent Neural Network

(RNN) and the main difference between this decoder and the

traditional decoder is the node attention mechanism. The node
attention mechanism is an extension of attention mechanism

in sequence-to-sequence model. It calculates the attention of

each node in graph to the token at the current position to

obtain the attention score. In this model, the manifestation

of attention is a context vector computed as a weighted

sum of related node representations. The context vector can

indicate the relationship between the current element and other

elements and participate in generation process along with

graph embeddings.

Inference. For time step i, the decoder predicts token yi ac-
cording to the previously predicted tokens y<i = y1, . . . , yi−1,

RNN hidden state si and the context vector ci. For each token
position, there is a list of tokens ranked by the likelihood of

being the next token. The beam search algorithm is used to

select which token should be the next. The decoder will predict

the next token until the 〈EOS〉 tag is read.

Beam search. Inspired by existing works [10], [19], [20],

we use beam search instead of greedy search. Beam search

[21] is an optimized algorithm for greedy search. For each time

step, Beam search selects k candidates with largest conditional
probability among all combinations as the candidate output

sequence based on the output sequence of the previous step,

where k means beam size. Compared to greedy search, beam

search expands the search space. Different from SequenceR

[9] and CoCoNut [10], we chose 20 as beam size to generate

patches. We observed that plausible patches are usually at

the top of the list. In our test dataset, there is no plausible

patches located after 20. It may be caused by the long

sequence we predicted. When the prediction sequence is long,

the patches at the bottom of the list are rarely compilable.

Beam search greatly improves our prediction accuracy. We

implement Graph2Seq model with Beam Search algorithm on

the basis of public code1

E. Patch Validation

Compilation. Each method is only a small part of the

project and our model has no access to the entire project. So

we should replace the buggy method with predicted sequence

and then compile the project. This step aims to filter out

patches that can not be compiled.

Validation. In addition to be compilable, plausible patches
must pass test suites. We recorded the number of test cases

our compilable patches passed. By comparing with test copy

version fails, we filtered out patches passing fewer test suites.

GrasP is performed on the basis that all buggy methods are

perfectly positioned(the input). We built our validation frame-

work based on the Defects4J framework. We first checked

out all bug versions in Defects4J. Then, we extracted all

changed methods between buggy and fixed files. We labeled

these changed methods in source files. We converted these

buggy methods into graphs and input them into the Graph2Seq

model to generate patches. When patches were generated, we

would replace labeled methods with their predicted version

and validate them. Since our patches are method-level, our

validation criteria are different from previous works [10]. The

validation criteria existing works meet are as follows. First,

the fixed version must also pass the test cases that the buggy

version can pass. Second, the fixed version must pass at least

one test case that the buggy version failed. We found that there

are bugs with buggy lines outside the method. For some bugs

in Defects4J, if buggy lines outside methods are not fixed, the

correct patch for method in the same file will not pass more

test cases. Therefore, for patches that can not pass more test

cases, we will manually check their effectiveness. After these

steps, we consider passed patches as plausible patches. Among
plausible patches, those that have been manually checked and

are deemed to be consistent with the semantics of the manual

patches will be regarded as correct patches.

V. EXPERIMENTS

A. Research Questions

To evaluate the effectiveness of our approach in bug fixing

and the rationality of the components, we aim to investigate

the following three research questions:

RQ1: How well does our approach perform in comparison
with the state-of-the-art end-to-end APR approach?
This question aims to study the performance difference

between GrasP and other state-of-the-art APR techniques.

We evaluated the effectiveness of our approach on a popular

baseline dataset Defects4J [13]. We checked out the buggy and

fixed versions of each bug in Defects4J, and extracted all the

change methods. We used a graph based on AST to represent

1https://github.com/IBM/Graph2Seq

823

Authorized licensed use limited to: YANGZHOU UNIVERSITY. Downloaded on March 07,2023 at 05:13:39 UTC from IEEE Xplore. Restrictions apply.

each method in Defects4J, and then transformed the graph

into our well-trained model. We set beam size 20 to search for

possible patches. In order to evaluate our approach objectively

and fairly, we selected the state-of-the-art APR approach [9]

for comparison.

RQ2:What kind of bugs can be fixed by our approach
compared with state-of-the-art NMT-based approaches?
Regarding the question of whether it can learn effective

unique patterns, we will answer this question through several

specific case studies. GrasP is an automatic end-to-end pro-

gram repair approach that can automatically learn fix patterns

from fixing history and use these patterns to generate patches.

Since these patterns learned by our model are abstract and

hard to explain, we used fix patterns classified by TBar [20]

to explain our results.

RQ3: How do various components affect the overall per-
formance of our approach?
This question is designed to answer whether the compo-

nents of our approach (mainly the node attention mechanism

and vocabulary) are effective for APR task. In order to

migrate Graph-to-Sequence learning to APR task, we consider

some localization operations including applying node attention

mechanism, limiting the vocabulary. Since the Graph2Seq

model is designed to learn the conversion of nodes in the

graph, we used a node attention mechanism to learn the

alignments between nodes and sequence elements better. To

reduce the impact of the vocabulary, we limited the vocabulary

by word frequency.

B. Experimental Setup

Dataset. Due to the lack of a standard training dataset for

Java, we constructed our training dataset from open-source

communities and public dataset [17]. We mainly extracted

BFPs from public dataset (containing more than 50,000 buggy-

fixed pairs and complete context) to eliminate differences in

the dataset. We randomly divided the dataset into training set,

validation set and test set at the ratio of 8:1:1 according to the

convention for each experiment. In ablation studies, we took

the average of results of five experiments as the final result.

To evaluate our approach, we chose Defects4J [13] as

our test dataset. Defects4J is a Java dataset of reproducible

bugs seen as a standard evaluation benchmark [9], [22]–

[25] for automated program repair. It has a collection of

reproducible Java bugs and a supporting infrastructure that

can help software engineering research. The latest version of

Defects4J contains 835 Java bugs.

Baseline. To evaluate the performance of GrasP, we chose
SequenceR [9], the most relevant work to our work, as the

baseline. SequenceR is a novel end-to-end APR approach

based on sequence-to-sequence learning. The main differences

between SequenceR and GrasP are that GrasP adapts a graph

representation and applies Graph-to-Sequence learning to learn

abstract fix patterns. In addition to the approach we selected,

there are many works that produce good results, but we did

not compare our approach with them in that GrasP is a

totally end2end solution for APR and based on the perfect

positioning. This means that GrasP knows the location of each

buggy method and takes methods as input instead of files or

projects. In the industrial scenario, before generating a patch,

it is necessary to find the position of the bug by applying

bug localization technique. At present, function-level and

file-level positioning are the mainstream of bug localization

technologies. This is also one of the reasons that we choose

to represent the method as a graph and generate patches for

the entire method. In order to eliminate the impact of bug

localization technology, we only compare GrasP with those

approaches and tools that assume perfect bug localization.

On the other side, GrasP is an end2end solution with single

translation model. Some NMT-based APR approaches [17],

[26] use multiple deep learning models instead of single model

to extract fix patterns from non-sequential representations.

Therefore, we selected the end-to-end APR approach based

on perfect bug localization assumption [9] as our baseline to

understand the performance of GrasP.
Similar to previous work [10], we extracted experimental

results from original paper [9] for comparison because of the

particularity of our dataset (a dataset composed of graphs

constructed by methods). It is plausible because the choice

of datasets and how to extract and represent data are a key

component of a technique [10].

C. Experiment Implementation

We trained and evaluated GrasP on the server with Nvidia

Graphics Tesla T4, windows 10 and 64g RAM. GrasP is

implemented by python and the implementation of Graph-

to-sequence model is based on the previous work [12]. The

conversion from methods to graphs mainly relies on Gumtree

[18] framework.

There is a big difference between programming languages

and natural languages, that is, programming languages have

many new words (variable names defined by developers at

will). To deal with this problem, we counted the frequency

of tokens in the dataset, and limited the vocabulary by word

frequency. Also, we retained some common tokens (e.g., Java

key words) based on experience.

As for the hyper-parameters, we randomly searched for

parameters within a given range. Based on experience and sug-

gestions given by the authors of the Graph2Seq model [12], we

limited the search space: learning rate = {10−3, 10−4, 10−5},
epoch = {100, 200, 300}, batch size = {16, 32}, dropout =
{0.3, 0.4, 0.5}. The hyper-parameters we finally adopted are

shown in the Table I.

TABLE I
HYPERPARAMETERS OF OUR MODEL

Embedding size 254

Learning rate 10−3

Dropout 0.3

Epoch 200

Batch size 32

824

Authorized licensed use limited to: YANGZHOU UNIVERSITY. Downloaded on March 07,2023 at 05:13:39 UTC from IEEE Xplore. Restrictions apply.

TABLE II
DETAILS OF CORRECT PATCHES GENERATED BY GRASP

Project Name Number of Bugs
Number of

Correct Patches

Chart 26 1

Closure 174 8

Lang 64 2

Math 106 3

Mockito 38 0

Time 26 2

Cli 39 4

Codec 18 1

Collection 4 0

Compress 47 0

Csv 16 0

Gson 18 0

JacksonCore 26 2

JacksonDatabind 112 2

JacksonXml 6 0

Jsoup 93 8

JxPath 22 1

Total 835 34

VI. EXPERIMENTAL RESULTS

A. Answer to RQ1: Evaluation on Defects4J

To evaluate our approach, we applied GrasP to fix real bugs

in Defects4J. Table II shows the details of correct patches

generated by GrasP. The first column represents the name

of the projects in Defects4J. The second column and the

third column list the number of bugs and the correct patches

for each project, respectively. After validation, we generated

compilable patches for 75 bugs in Defects4J. According to

the evaluation criteria mentioned in Section IV-E, patches

provided for 34 bugs are correct.

Func t ionType fnType = t ype . toMaybeFunct ionType () ;
− i f (fnType != n u l l) {
+ i f (fnType != n u l l && fnType . h a s I n s t a n c eType

()) { v i s i t P a r a m e t e r L i s t (t , n , fnType) ;}

Fig. 5. Patch for Closure 125

Fig. 5 shows a patch for Defects4J bug Closure 125

generated by GrasP. GrasP can fix common bugs such as

misusing of variable names and conditional statement errors.

According to our observations, there are several characteristics

with bugs that our model cannot generate patches for. 140

bugs in Defects4J involve more than one method changed in

the fixed version. 74 of them have more than one changed

file. GrasP has trouble in dealing with these 140 bugs. Also,

for most long methods (with more than 300 tokens), GrasP
cannot generate compilable patches. In addition, there are

some changed variable names never occuring in our code

corpus and the buggy method. These variables tend to appear

in the file where buggy method is located but out of the

buggy method. Because of the granularity of the input graph,

GrasP cannot perceive the relation between buggy methods or

connection between buggy methods and its context out of the

methods.

To comprehensively evaluate the performance of an APR

approach, it is necessary to consider the learning ability of

the model, generalization ability, accuracy and other factors.

Among those NMT-based approaches mentioned before, Se-

quenceR [9] is most relevant to our approach and chosen as our

baseline. It should be noted that their results were produced

on the old version of Defects4J [13]. Defects4J added several

new projects (e.g., JacksonDatabind) after updating. The old

version has only 6 projects (Chart, Closure, Lang, Math, Time,

Mockito) containing 393 bugs, so we selected our results on

these 6 projects for comparison.

The results show that GrasP achieves better performance

than SequenceR on Defects4J. SequenceR generates plausible

patches for 19 single-line bugs in Defects4J, of which 14

are correct (the results are extracted from its original paper).

Compared with SequenceR on these 6 projects, GrasP gener-

ated plausible patches for 30 bugs and 16 patches are correct.

These correct patches are manually checked and semantically

equivalent to human-written patch. SequenceR only focuses

on single-line bugs. For too long methods or methods with

multiple lines of buggy code, SequenceR can only choose

to copy most of tokens in the input sequence because of

the limitation of the sequence model. GrasP can generate

more correct patches than SequenceR in that GrasP cannot

only deal with single-line bugs but also bugs with multiple

discontinuous lines in single methods. GrasP is able to learn

more fix patterns involved more complex grammatical struc-

tural changes. By representing the source code as optimized

AST-based graph, these syntactic and semantic related tokens

are more closely connected. This means that fix patterns that

GrasP can learn is not limited to one single line but in the

granularity of the method.

As a conclusion, GrasP provides two more correct patches

and 11 more plausible patches than the baseline approach.

Moreover, GrasP can learn abstract fix patterns at the granu-

larity of the method-level.

B. Answer to RQ2: Qualitative Case Studies

Different from SequenceR, GrasP is able to learn changes

in the method structure from graphs. Next, we show several

fix patterns learned by our model. These patterns are not

captured by SequenceR [9]. Fix patterns extracted by our

model are abstract and reflected by combination of parameters.

Therefore, we describe the fix patterns learned by GrasP
through some generated correct patches.

Move Statement and remove redundant statement.
As shown in Fig. 6, the statement token.add(token)
moves out of the block. At the same time, the redundant

token.add(token) is deleted. These three discontinuous

825

Authorized licensed use limited to: YANGZHOU UNIVERSITY. Downloaded on March 07,2023 at 05:13:39 UTC from IEEE Xplore. Restrictions apply.

statements are semantically related and need to be modified

simultaneously.

{
c u r r e n tO p t i o n = o p t i o n s . g e tOp t i o n (t oken

) ;
− t o k en s . add (t oken) ;

}
e l s e i f (s topAtNonOpt ion)
{

e a tTheRe s t = t rue ;
− t o k en s . add (t oken) ;

}
+ t ok en s . add (t oken) ;

Fig. 6. Patch for Cli 19

Remove entire buggy method. In Fig. 7, GrasP removes

the overiding method getLeastSupertype. In our val-

idation process, we observed that there are several buggy

methods need to be deleted (e.g., buggy override method). We

observe that GrasP probabilistically generates label 〈EOS〉
when encountered @override. Deleting the entire method

is a plausible fixing pattern in TBar [20] (namely FP15.2).

− @Override
− p u b l i c JSType g e t L e a s t S u p e r t y p e (JSType t h a t) {
− i f (! t h a t . i sReco rdType ()) {
− re turn super . g e t L e a s t S u p e r t y p e (t h a t) ;
− }
− Reco rdTypeBu i lde r b u i l d e r = new

Reco rdTypeBu i lde r (r e g i s t r y) ;
− f o r (S t r i n g p r o p e r t y : p r o p e r t i e s . keySe t ()) {
− i f (t h a t . toMaybeRecordType () . h a s P r o p e r t y (

p r o p e r t y) &&
− t h a t . toMaybeRecordType () . g e t P r o p e r t yTyp e (

p r o p e r t y) . i s E q u i v a l e n t T o (
− g e t P r op e r t yTyp e (p r o p e r t y))) {
− b u i l d e r . a d dP r op e r t y (p r o p e r t y ,

g e t P r o p e r t yType (p r o p e r t y) ,
− ge tP r ope r t yNode (p r o p e r t y)) ;
− }
− }
− re turn b u i l d e r . b u i l d () ;
− }

Fig. 7. Patch for Closure 46

Modify and move statement. Fig. 8 shows that method

invocation expression scope=traverse(constructor
,scope) is mutated and then moved to another position. This
pattern involves simultaneous modification of multiple lines.

+ scope = t r a v e r s e C h i l d r e n (n , scope) ;

Node c o n s t r u c t o r = n . g e t F i r s t C h i l d () ;
− scope = t r a v e r s e (c o n s t r u c t o r , s cope) ;

JSType c o n s t r u c t o r T y p e = c o n s t r u c t o r . ge t JSType
() ;

Fig. 8. Patch for Closure 25

By studying these three fix patterns learned by GrasP, we
found these three patterns are involved in overall changes of

multiple discontinuous lines. These fix patterns modified the

structure of the entire method. SequenceR [9] cannot cope with

these complex changes. SequenceR is mainly designed to deal

with single-line (continuous lines) bugs. The representation it

adopted can only learn the changes that occur within single

continuous line, and lack cognition of the overall structure.

Similar to the granularity we selected, Tufano et al. [8]

presented an approach to represent the buggy method as a

abstract sequence. However, Tufano et al. [8] limited the length

of input sequence within 50 tokens. In fact, many real buggy

methods are above 50 in length. The longest compilable patch

GrasP generated has 292 tokens.

GrasP is able to capture complex changes in code structure.

Since we adopted an AST-based graph representation, this

representation shortens the distance between related tokens

and can model the structural information of the method.

Therefore, our model can learn these three fix patterns. How-

ever, our approach seems to have no advantage in fixing

single-line bugs compared with other approaches [9], [10]. In

contrast, our model performs better when it comes to complex

structural transformations. By removing some virtual nodes

and strengthening the connections between related nodes, our

model can also learn some patterns such as Mutate Variable.
To summarize, GrasP can learn fix patterns that were not

learned by SequenceR [9]. These fix patterns involved changes

in the entire method structure. GrasP learned these patterns

because our graph representation can model the structural

information of the entire buggy method and the model with

Graph-to-Sequence learning can learn patterns from the com-

plex graph representation.

C. Answer to RQ3: Ablation Research

In this section, we analyze the importance of each compo-

nent of our approach.

TABLE III
THE EFFECT OF CODE REPRESENTATION

Code Representation Correct Rate Correct Number

AST-based Graph 16.1 177

AST-based Sequence 14.5 160

Sequence 14.9 164

Code Representation. To evaluate the code semantic ex-

pression ability of the code graph representation and sequence

representation, we built a new test data set and deployed a

comparative experiment. The test set contains 1100 buggy

methods from the same projects as buggy methods in train-

ing set. In our approach, we took an AST-based graph to

represent the buggy method and used a Graph-to-Sequence

model to learn abstract fix patterns. Previous NMT-based APR

approaches used sequence [9], [10] or sequence generated by

traversing AST as the input of the NMT model. Therefore, we

considered the following three representations for comparison,

namely the AST-based graph representation, the AST-based

sequence representation, and the sequence representation of

the code. In order to form graphs to adapt to the input of the

826

Authorized licensed use limited to: YANGZHOU UNIVERSITY. Downloaded on March 07,2023 at 05:13:39 UTC from IEEE Xplore. Restrictions apply.

graph encoder, we concatenated the tokens in the latter two

sequence representations.

Our experiment was carried out with all default settings

unchanged except for the form of code representation. The

experimental results are shown in Table III. The best result

is achieved by using our AST-based graph to represent the

code. The model using AST-based graph correctly predicted

177 of 1100(16.1%) methods. This is because the AST-based

graph representation we used can better retain the AST syntax

structure and target the NMT model information. In addition,

actions are taken to optimize the graph representation to

shorten the distance between related tokens. The sequence

generated by AST traversal contains tokens that represent syn-

tactic structures and do not exist in the source code. Although

they can grasp some of the syntactic information, they will also

increase the distance between nodes of adjacent subtrees in the

AST. On the other side, the source code sequence is poor in

characterizing the relationship between tokens that have long-

distance dependencies. For our approach, it is a better way to

use graphs to represent code for preserving more of the source

code syntax and semantics .

Node Attention Mechanism. Then, we deployed a compar-

ative experiment on the same test set to evaluate the learning

ability of Graph2Seq model before and after applying the

attention mechanism. The node attention mechanism is an

extension of attention mechanism in sequence-to-sequence

model. It can calculate the attention of each node in graph

to the token at the current position to obtain the attention

score and then help generate the target token. The comparative

experiment is deployed under the condition of consistent

vocabulary and beam size. The results indicate that the node

attention mechanism greatly improved the learning ability of

Graph2Seq model. The model without attention mechanism

correctly predicted 119 of 1100 (10.8%) methods while the

model with node attention mechanism predicted 177 of 1100

(16.1%). With node attention mechanism, model can put more

attention to the important node. At the process of generating,

for each position, the decoder can take some related nodes

into consideration to give more accurate predictions.

TABLE IV
THE EFFECT OF NODE ATTENTION MECHANISM

Model Description Correct Rate Correct Number

node attention=False 10.8 119

node attention=True 16.1 177

Vocabulary. We tested performances of the model without

constraining the vocabulary. Although the model performs

well on our own test set, it is unable to generate correct

patches for bugs in Defects4J except five patches (of them

four patches delete the entire methods, one patch mutates a

return statement by replacing True with False). The model

with only keywords in the vocabulary achieves similar results.

We studied the impact of the vocabulary on our results. Due

to the differences between programming languages and natural

languages, we must limit the vocabulary while applying NMT

model to dealing with programming languages. Developers

often introduce new words (e.g., custom variable name) in

code, which makes the vocabulary of code much larger than

the natural language vocabulary.

p u b l i c f i n a l c l a s s <unk> {
i f (coun t > <unk>)

re turn new S t r i n g (<unk>, s t a r t , coun t) ;
i f (coun t < 1)

re turn <unk>;
}

Fig. 9. Abstract representation of a Java method(retain common tokens)

p u b l i c f i n a l c l a s s <unk> {
i f (<unk> > <unk>)

re turn new <unk>(<unk>, <unk>, <unk>) ;
i f (<unk> < <unk>)

re turn <unk>;
}

Fig. 10. Abstract representation of a Java method

Fig. 9 shows an abstract representation of a Java method

with 〈unk〉. The label 〈unk〉 represents the new word absent

in vocabulary. In this example, some variable names that

rarely appear in the code corpus are replaced with 〈unk〉. The
vocabulary determines the degree of abstraction and directly

affects the generalization performance of the model. If we

did not limit vocabulary or made too many limitations on

the vocabulary (Fig. 10), the model would have trouble in

learning useful fix patterns with generalization ability. Refer

to the practice of SequenceR [9], we retained both Java key

words and common words (filtered by word frequency in our

code corpus) to limit the vocabulary. The model with limited

vocabulary (about 12,000 tokens for Java) can generate 34

correct patches for bugs in Defects4J [13].

VII. THREATS TO VALIDITY

In this section, we discuss the threats to our study, including

internal threats and external threats.

Internal threats. Internal threats are mainly from the

experimental results. Some approaches mentioned in our paper

did not disclose the source code, so we could not re-implement

them and had to collect their published results on Defects4J.

In addition, due to the randomness of deep learning models,

We conduct multiple experiments through random division of

the dataset and parameter adjustment to make the experimental

results converge to a stable value.

External threats. One of the main external threats to our

study is the reliability of the data sources. Since there is

no public benchmark training dataset, NMT-based approaches

tend to obtain data from some open source communities.

The quality of the training dataset may cause differences in

performance. In this case, we decide to use dataset used by

other works to reduce the difference caused by the data set.

827

Authorized licensed use limited to: YANGZHOU UNIVERSITY. Downloaded on March 07,2023 at 05:13:39 UTC from IEEE Xplore. Restrictions apply.

However, SequenceR [9] dataset and CoCoNut [10] dataset did

not meet our needs. In the end, we chose to use DLfix [17]

dataset. In addition, in spite of the dataset we constructed only

contains Java projects, our approach learns fix patterns from

historical commits and generates patches by an end-to-end

model that the artifacts are not tied to Java. So our approach

can be applied to other program languages.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we proposed a novel end-to-end APR approach

to generate patches for buggy methods. We introduce the graph

representation of the buggy method instead of sequence rep-

resentation and use Graph-to-Sequence model to capture rich

information of the graph. Our evaluation results demonstrate

that GrasP can learn more fix patterns, and generate correct

patches for more buggy methods.

In the future, we plan to explore more accurate code

representations, which can retain more syntax and semantics

information for the generation task. In addition, we will

perform the evaluation on more projects and programming

languages to show the generalibility of GrasP.

ACKNOWLEDGMENTS

This work was supported partially by Natural Science Foun-

dation of China under Grant No. 61972335, No. 61872312,

and No. 62002309, the Yangzhou city-Yangzhou University

Science and Technology Cooperation Fund Project, the Six

Talent Peaks Project in Jiangsu Province (No. RJFW-053),

the Jiangsu “333” Project, the Open Funds of State Key

Laboratory for Novel Software Technology of Nanjing Uni-

versity (No. KFKT2020B15, No. KFKT2020B16), the Key

Laboratory of Safety-Critical Software Ministry of Industry

and Information Technology (No. NJ2020022), the Natural

Science Research Project of Universities in Jiangsu Province

(No. 20KJB520024), and Yangzhou University Top-level Tal-

ents Support Program (2019).

REFERENCES

[1] X. Sun, T. Zhou, R. Wang, Y. Duan, L. Bo, and J. Chang, “Experience
report: investigating bug fixes in machine learning frameworks/libraries,”
Frontiers Comput. Sci., vol. 15, no. 6, p. 156212, 2021.

[2] J. Lu, X. Sun, B. Li, L. Bo, and T. Zhang, “BEAT: considering question
types for bug question answering via templates,” Knowl. Based Syst.,
vol. 225, p. 107098, 2021.

[3] S. Cao, X. Sun, L. Bo, Y. Wei, and B. Li, “BGNN4VD: Construct-
ing bidirectional graph neural-network for vulnerability detection,” Inf.
Softw. Technol., vol. 136, p. 106576, 2021.

[4] X. Sun, X. Peng, B. Li, B. Li, and W. Wen, “IPSETFUL: an iterative
process of selecting test cases for effective fault localization by exploring
concept lattice of program spectra,” Frontiers Comput. Sci., vol. 10,
no. 5, pp. 812–831, 2016.

[5] Z. Ni, B. Li, X. Sun, T. Chen, B. Tang, and X. Shi, “Analyzing bug
fix for automatic bug cause classification,” J. Syst. Softw., vol. 163, p.
110538, 2020.

[6] C. L. Goues, M. Pradel, A. Roychoudhury, and S. Chandra, “Automatic
program repair,” IEEE Softw., vol. 38, no. 4, pp. 22–27, 2021.

[7] R. S. Shariffdeen, Y. Noller, L. Grunske, and A. Roychoudhury, “Con-
colic program repair,” in PLDI ’21: 42nd ACM SIGPLAN International
Conference on Programming Language Design and Implementation,
Virtual Event, Canada, June 20-25, 20211, 2021, pp. 390–405.

[8] M. Tufano, C. Watson, G. Bavota, M. Di Penta, M. White, and
D. Poshyvanyk, “An empirical investigation into learning bug-fixing
patches in the wild via neural machine translation,” in Proceedings of
the 33rd ACM/IEEE International Conference on Automated Software
Engineering, 2018, pp. 832–837.

[9] Z. Chen, S. J. Kommrusch, M. Tufano, L.-N. Pouchet, D. Poshyvanyk,
and M. Monperrus, “Sequencer: Sequence-to-sequence learning for end-
to-end program repair,” IEEE Transactions on Software Engineering,
2019.

[10] T. Lutellier, H. V. Pham, L. Pang, Y. Li, M. Wei, and L. Tan, “Coconut:
Combining context-aware neural translation models using ensemble for
program repair,” in Proceedings of the 29th ACM SIGSOFT International
Symposium on Software Testing and Analysis, 2020, pp. 101–114.

[11] M. Allamanis, M. Brockschmidt, and M. Khademi, “Learning to repre-
sent programs with graphs,” arXiv preprint arXiv:1711.00740, 2017.

[12] K. Xu, L. Wu, Z. Wang, Y. Feng, M. Witbrock, and V. Sheinin,
“Graph2seq: Graph to sequence learning with attention-based neural
networks,” arXiv preprint arXiv:1804.00823, 2018.

[13] R. Just, D. Jalali, and M. D. Ernst, “Defects4j: A database of existing
faults to enable controlled testing studies for java programs,” in Pro-
ceedings of the 2014 International Symposium on Software Testing and
Analysis, 2014, pp. 437–440.

[14] S. Iyer, I. Konstas, A. Cheung, and L. Zettlemoyer, “Summarizing source
code using a neural attention model,” in Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), 2016, pp. 2073–2083.

[15] O. Vinyals, M. Fortunato, and N. Jaitly, “Pointer networks,” Advances in
Neural Information Processing Systems, vol. 28, pp. 2692–2700, 2015.

[16] N. Jiang, T. Lutellier, and L. Tan, “Cure: Code-aware neural machine
translation for automatic program repair,” in 2021 IEEE/ACM 43rd
International Conference on Software Engineering (ICSE). IEEE, 2021,
pp. 1161–1173.

[17] Y. Li, S. Wang, and T. N. Nguyen, “Dlfix: Context-based code trans-
formation learning for automated program repair,” in Proceedings of
the ACM/IEEE 42nd International Conference on Software Engineering,
2020, pp. 602–614.

[18] J. Falleri, F. Morandat, X. Blanc, M. Martinez, and M. Monperrus,
“Fine-grained and accurate source code differencing,” in ACM/IEEE
International Conference on Automated Software Engineering, ASE
’14, Vasteras, Sweden - September 15 - 19, 2014, 2014, pp. 313–324.
[Online]. Available: http://doi.acm.org/10.1145/2642937.2642982

[19] S. Wiseman and A. M. Rush, “Sequence-to-sequence learning as beam-
search optimization,” arXiv preprint arXiv:1606.02960, 2016.

[20] K. Liu, A. Koyuncu, D. Kim, and T. F. Bissyandé, “Tbar: Revisiting
template-based automated program repair,” in Proceedings of the 28th
ACM SIGSOFT International Symposium on Software Testing and
Analysis, 2019, pp. 31–42.

[21] C. M. Wilt, J. T. Thayer, and W. Ruml, “A comparison of greedy search
algorithms,” in third annual symposium on combinatorial search, 2010.

[22] J. Xuan, M. Martinez, F. Demarco, M. Clement, S. L. Marcote,
T. Durieux, D. Le Berre, and M. Monperrus, “Nopol: Automatic repair
of conditional statement bugs in java programs,” IEEE Transactions on
Software Engineering, vol. 43, no. 1, pp. 34–55, 2016.

[23] Z. Qi, F. Long, S. Achour, and M. Rinard, “An analysis of patch
plausibility and correctness for generate-and-validate patch generation
systems,” in Proceedings of the 2015 International Symposium on
Software Testing and Analysis, 2015, pp. 24–36.

[24] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer, “Genprog: A
generic method for automatic software repair,” Ieee transactions on
software engineering, vol. 38, no. 1, pp. 54–72, 2011.

[25] A. Koyuncu, K. Liu, T. F. Bissyandé, D. Kim, J. Klein, M. Monperrus,
and Y. Le Traon, “Fixminer: Mining relevant fix patterns for automated
program repair,” Empirical Software Engineering, pp. 1–45, 2020.

[26] S. Chakraborty, M. Allamanis, and B. Ray, “Codit: Code edit-
ing with tree-based neural machine translation,” arXiv preprint
arXiv:1810.00314, 2018.

828

Authorized licensed use limited to: YANGZHOU UNIVERSITY. Downloaded on March 07,2023 at 05:13:39 UTC from IEEE Xplore. Restrictions apply.

