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A B S T R A C T

Context: Previous studies have shown that existing deep learning-based approaches can significantly improve
the performance of vulnerability detection. They represent code in various forms and mine vulnerability
features with deep learning models. However, the differences of code representation forms and deep learning
models make various approaches still have some limitations. In practice, their false-positive rate (FPR) and
false-negative rate (FNR) are still high.
Objective: To address the limitations of existing deep learning-based vulnerability detection approaches, we
propose BGNN4VD (Bidirectional Graph Neural Network for Vulnerability Detection), a vulnerability detection
approach by constructing a Bidirectional Graph Neural-Network (BGNN).
Method: In Phase 1, we extract the syntax and semantic information of source code through abstract syntax
tree (AST), control flow graph (CFG), and data flow graph (DFG). Then in Phase 2, we use vectorized source
code as input to Bidirectional Graph Neural-Network (BGNN). In Phase 3, we learn the different features
between vulnerable code and non-vulnerable code by introducing backward edges on the basis of traditional
Graph Neural-Network (GNN). Finally in Phase 4, a Convolutional Neural-Network (CNN) is used to further
extract features and detect vulnerabilities through a classifier.
Results: We evaluate BGNN4VD on four popular C/C++ projects from NVD and GitHub, and compare it with
four state-of-the-art (Flawfinder, RATS, SySeVR, and VUDDY ) vulnerab ility detection approaches. Experiment
results show that, when compared these baselines, BGNN4VD achieves 4.9%, 11.0%, and 8.4% improvement
in F1-measure, accuracy and precision, respectively.
Conclusion: The proposed BGNN4VD achieves a higher precision and accuracy than the state-of-the-art
methods. In addition, when applied on the latest vulnerabilities reported by CVE, BGNN4VD can still achieve
a precision at 45.1%, which demonstrates the feasibility of BGNN4VD in practical application.
. Introduction

Software vulnerabilities can be exploited by hackers to conduct
yber attacks and cause enormous losses [1,2]. Take the DAO1 (De-
entralized Autonomous Organization) event for example, the hackers
xploit the reentrancy bug of The DAO contract to steal 3.6 million
ther (Cryptocurrency of Ethereum). In recent years, the number of
oftware vulnerabilities has been increasing rapidly. The vulnerabilities
eported by Common Vulnerabilities and Exposures (CVE2) show that,
efore 2016, the number of software vulnerabilities was around 6000
er year. Since 2017, the number of software vulnerabilities has risen
harply to around 15,000. In spite of the effort made by academia and
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1 http://etherscan.io/address/0xbb9bc244d798123fde783fcc1c72d3bb8c189413.
2 http://cve.miter.org/.

industry to improve software quality, vulnerabilities are still a difficult
problem to solve.

Some empirical results show that there is correlation between vul-
nerabilities and bugs, but it is weak [3]. Conceptually, vulnerabilities
are different from bugs. Vulnerabilities represent abusive functionality,
but bugs represent wrong or insufficient functionality. Vulnerability
detection is a task that tries to find software vulnerabilities by auditing
the software code or analyzing the execution process of software [4–
12]. It requires understanding and reasoning about program seman-
tics. Therefore, approaches used for detecting bugs cannot be used
for vulnerability detection directly. At present, vulnerability detection
approaches are mainly based on source code or bytecode [13–19].
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These approaches can be divided into two types: metric-based (or
rule-based) and pattern-based approaches. Metric-based approaches,
which treat vulnerabilities as a special kind of bug, are inspired by
bug detection [20–26]. They are based on some metrics (e.g., code
churn) that are often defined by human experts. These approaches
have attained a limited success because they cannot avoid the intense
labor of human experts on feature extraction and it is impractical to
characterize all vulnerabilities with hand-crafted features. Rather than
relying on human experts, pattern-based approaches leverage machine
learning techniques to automatically learn vulnerability patterns. Deep
learning (DL), with the great power to deal with large volume of soft-
ware code and vulnerability data, is recently introduced in vulnerability
detection [27–32]. These vulnerability detection approaches have a
common procedure: First, they transform the code into the defined
representation forms (e.g., tokens) [4,6] which are suitable for learning
the syntax and semantic information to extract the features related to
vulnerabilities. Then, the features are vectorized by encoding models
to enhance the representation ability of features. Finally, the labels for
detection results are calculated by a deep learning model. However,
different forms of code representation in these approaches only retain
partial information (either syntax or semantics), which cannot cover
various vulnerabilities and limit the effect of detection.

Furthermore, since source code is more logical and structural than
natural languages, neural networks used for training need to be able to
handle the non-sequential feature representation. Even though many
deep learning models are used in vulnerability detection, there are
still some limitations: Firstly, Convolutional Neural Network (CNN) and
Recurrent Neural Network (RNN) are sequence-based model and cannot
handle the non-sequential feature of graphs in the code representation.
Secondly, Graph Neural Networks (GNN) can only handle single graph
without attributes and a part of them (e.g., Gate Graph Neural Network
(GGNN) [33]) cannot accommodate the information of incoming edges
and outgoing edges into a node at the same time.

To cope with above two challenges, in this paper, we propose
a bidirectional graph neural network-based approach for vulnerabil-
ity detection. We consider multiple code representations which can
accommodate sufficient syntax and semantic information of vulnera-
bilities. Firstly, we transform source code into different graphs which
can reflect syntax and semantic features (e.g., Control Flow Graph).
Then we vectorize these nodes in graphs as iput to our Bidirectional
Graph Neural Network (BGNN) for training. Finally, we extract features
through a convolutional neural network and use a classifier to detect
vulnerabilities.

The main contributions of this paper are as follows:

• We propose BGNN4VD (Bidirectional Graph Neural Network for
Vulnerability Detection), a vulnerability detection approach by
constructing a Bidirectional Graph Neural-Network (BGNN). We
extract the features from BGNN followed by a CNN to identify
whether the program function is vulnerable.

• We manually collected 2149 vulnerabilities and 3867 vulner-
able functions from four popular C/C++ open source projects
(i.e., Linux Kernel, FFmpeg, Wireshark and Libav) to construct our
dataset. Compared with the state-of-the-art detectors, BGNN4VD
achieves 4.9%, 11.0%, and 8.4% improvement in F1-measure,
accuracy and precision, respectively.

The rest of the paper is organized as follows. In Section 2, we
describe the motivation of constructing BGNN to implement our work
and the technical background of BGNN4VD. Section 3 explains the de-
tailed design of our approach. Section 4 introduces the implementation
of our approach. Section 5 is the systematic experiment and analysis
of the results. In Section 6, we analyze the threats to validity of our
approaches and experiments. Section 7 is the related work. Section 8
concludes the paper and makes an explanation of the future work.
2

Fig. 1. Motivating example.

2. Motivation and background

In this section, we describe the motivation of constructing BGNN to
implement our work and the technical background of BGNN4VD.

2.1. Motivation

We use a real-world vulnerability occurred in Linux Kernel to
illustrate the reason why we construct BGNN.

CVE-2019-190753 is a memory leak vulnerability which allows
attackers to cause a denial of service. Its diff file is shown in Fig. 1.
The vulnerability occurred in function ca8210_probe due to missing
release of memory after effective lifetime: the failure of ca8210_get_
platform_data may lead pdata cannot be released. It allows
attackers to cause a denial of service (memory consumption) by trigger-
ing ca8210_get_platform_data failures. To fix this vulnerability,
the allocated pdata needs to be assigned to spi_device→dev.
platform_data before calling ca8210_get_platform_data
(line 3155).

From this example, we can obtain the following two observations:
Observation 1. This vulnerability cannot be detected by using

single code graph such as Abstract Syntax Tree (AST) because it
can only reflect the syntax problems. Also, the flow direction of
pdata in vulnerable function and patched function is completely
consistent. But their control flows are different. As shown in Fig. 2,
we can see that in vulnerable function, the vulnerable statement
priv→spi→dev.platform_data = pdata executes after
if (ret) {…}, but in patched function, the vulnerable statement ex-
ecutes before ret = ca8210_get_platform_data(priv→spi,
pdata). Therefore, it is necessary to consider various code graphs
which reflect syntax and semantic gaps between vulnerable statements
and non-vulnerable statements.

Observation 2. The neural network used to train the detection
model should be able to accommodate rich context information. As
shown in Fig. 1, the core question of this vulnerability is whether
the allocated pdata is assigned before calling ret = ca8210_get_
platform_data(priv→spi,pdata). An ideal detection model
should accommodate the information about the statements that appear
before and after the vulnerable statements. Compared with widely
used Convolutional Neural Network (CNN) and Recurrent Neural Net-
work (RNN), Graph Neural Network (GNN) can effectively handle
the non-sequential features of graph-based data. However, since the
communication between nodes in the existing GNNs is mostly unidirec-
tional, the context information will be partially masked. Hence, how to
aggregate information of different edges from various graphs and make

3 https://nvd.nist.gov/vuln/detail/CVE-2019-19075.

https://nvd.nist.gov/vuln/detail/CVE-2019-19075
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Fig. 2. Different control flows of motivating example.
a distinction between forward information and backward information
are needed to be tackled.

From Observation 1, we combine AST, CFG and DFG, and pro-
pose Code Composite Graph (CCG) for capturing various syntax and
semantic information of source code. From Observation 2, we propose
Bidirectional Graph Neural Network (BGNN) that aggregates the infor-
mation from all graphs at each step during the iterative learning process
and pass information to neighbors through both forward edges and
backward edges. With bidirectional edges, BGNN4VD can accommodate
more information about the statements that appear before and after the
vulnerable statements.

2.2. Background

Code representation. Code representation is often used in static
analysis and other tasks that need to infer semantics relationships be-
tween statements. A good code representation can extract features from
source code considering multiple aspects and express the vulnerability
characteristics comprehensively. It is a pre-processing step that builds a
‘‘bridge’’ between a program and its vector representation, which is the
actual input to deep learning-based model for vulnerability detection.
Commonly, code representation techniques exploit graph structure to
represent the syntax and semantics characteristics. There are Abstract
Syntax Trees (AST), Control Flow Graph (CFG), and Data Flow Graph
(DFG). AST [7,34] is an intermediate representation in the compilation
process, and the syntax information of the function is stored through
the tree. CFG and DFG are abstract representations of a program.
CFG [35,36] represents the possible flow of all basic block execution
within a process in the form of a graph and also reflects the real-time
execution of a process. DFG graphically expresses the logical functions
of a program and depicts the process of data flow in the program from
the perspective of data transmission and processing. The definitions of
AST, CFG and DFG are as follows:

Definition 1 (Abstract Syntax Tree (AST)). A graph 𝐺𝑖
𝐴 = (𝑉 𝑖

𝐴, 𝐸
𝑖
𝐴) where

𝑖 is the 𝑖st function 𝑓𝑖 in a program 𝑃 = 𝑓1, 𝑓2,… , 𝑓𝜂 , 𝑉 𝑖
𝐴 is a set of leaf

nodes, and 𝐸𝑖
𝐴 is a set of directed edges with each edge links a pair of

parent–child nodes.
3

Definition 2 (Control Flow Graph (CFG)). A graph 𝐺𝑖
𝐶 = (𝑉 𝑖

𝐶 , 𝐸
𝑖
𝐶 ) where

𝑉 𝑖
𝐶 is a set of nodes, and 𝐸𝑖

𝐶 is a set of directed edges with each edge
indicate the flow of control.

Definition 3 (Data Flow Graph (DFG)). A graph 𝐺𝑖
𝐷 = (𝑉 𝑖

𝐷, 𝐸
𝑖
𝐷) where

𝑉 𝑖
𝐶 is a set of nodes, and 𝐸𝑖

𝐶 is a set of directed edges with each edge
indicate the access or modification of variables.

From the definitions above, we can see that AST, CFG and DFG
contain abundant syntax and semantic information of programs. In
this paper, we combine AST, CFG and DFG as input to construct a
bidirectional graph neural network, so as to extract features that can
represent the code more precisely.

Gated Graph Neural Networks. Our work builds on Gated Graph
Neural Networks (GGNN) [33], which introduces a learnable parameter
𝑊 for different types of edges, so that we can handle various graphs
that traditional GNN cannot. We summarize how GGNN works here.

For a graph  = ( ,,𝑿),  is a set of nodes,  = (1,… , 𝐾 ) is a
list of directed edge sets where 𝐾 is the number of edge types and 𝑿
are node annotations (i.e., node labels used as inputs). GGNN annotates
each 𝑣 ∈  with a real-valued vector 𝒙(𝑣) ∈ R𝐷 representing the features
of the node.

GGNN associates each node 𝑣 with a state vector 𝒉(𝑣) initialized from
the node initial representation 𝒙(𝑣) which represents the characteristic
information of the node itself. The state vector of each node will be
updated in each time step for iteration and becomes feature vector
we used for classification after iterations. The sizes of the state vector
and feature vector are typically the same, but we can use larger state
vectors through padding of node features. To propagate information
throughout the whole graph, message contained by type 𝑘 are sent from
each 𝑣 to its neighbors, where each type of message 𝒎(𝑣)

𝑘 is computed
from its current state vector 𝒉(𝑣) through an arbitrary function. By
computing messages for all graph edges at the same time, the state
vectors of all nodes can be updated at the same time. In particular,
a new state for a node 𝑣 is computed by aggregating all incoming
messages as 𝒎̃(𝑣) = 𝑔(𝒎(𝑣)

𝑘 ), in which there is an edge of type 𝑘 from 𝑢
to 𝑣. Here, 𝑔 is an aggregation function. Given the aggregated message
𝒎̃(𝑣) and the current state vector 𝒉(𝑣) of node 𝑣, the state of the next
time step 𝒉′(𝑣) is computed as 𝒉′(𝑣) = 𝐺𝑅𝑈 (𝒎̃(𝑣),𝒉(𝑣)), where GRU is the
recurrent cell function of gated recurrent unit (GRU). The dynamics
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Fig. 3. The process of BGNN4VD.
Fig. 4. Code sample.

defined by the above equations are repeated for a fixed number of time
steps 𝑇 . Then, the state vectors from the last time step is the final node
representations and will be used as input for classification.

3. Our approach

Fig. 3 shows the process of BGNN4VD. It includes four phases:
(1) extracting syntax and semantic information of source code, (2)
encoding source code into vectors as input to graph neural networks,
(3) training the neural network model, and (4) detecting vulnerabilities.

BGNN4VD takes the vulnerable files as input. In Phase 1, the vul-
nerable files are transformed into graphs that preserve the semantic
relationships between the elements of programs (e.g., data dependency
and control dependency). In Phase 2, the nodes in graphs are encoded
into vectors. In Phase 3, BGNN model is trained and the feature vectors
of nodes which reflect vulnerability patterns are obtained. Finally,
we use the classifier in Phase 4 to detect whether the input file is
vulnerable or not at the function level.

3.1. Extracting syntax and semantic information

The syntax information can be represented by AST and the semantic
information can be represented by CFG and DFG. We combine AST, CFG
and DFG in our approach and propose Code Composite Graph (CCG).
CCG consists of a set of nodes of AST and different types of edges.
Statements and predicate nodes are connected by CFG and DFG. Thus,
the types of edges reflect the syntax and semantic relationships between
different nodes. The definition of CCG is as follows:

Definition 4 (Code Composite Graph (CCG)). For a program 𝑃 =
{𝑓1, 𝑓2,… , 𝑓𝜂}, the code composite graph of function 𝑓𝑖 is denoted
by 𝐺 = (𝑉 ,𝐸), where 𝑉 = 𝑉 𝑖

𝐴 represents that nodes 𝑉 of the code
composite graph are composed of leaf nodes 𝑉 𝑖

𝐴 in AST, and 𝐸 =
𝐸𝑖
𝐴 ∪ 𝐸𝑖

𝐶 ∪ 𝐸𝑖
𝐷 represents 𝐸 is a set of mixed edges with AST, CFG and

DFG.
4

Take the function max in Fig. 4 for example, its AST, CFG and DFG
are shown in Fig. 5. The CCG is shown in Fig. 6. Note that the order
in which statements are executed cannot be determined from three
graphs, but the dependencies between statements and predicates are
clearly visible. The blue arrows in CCG represent child-parent relations
in AST. It reflects the syntax structure of the given code. The red and
orange arrows in CCG represent control dependence in CFG and data
dependence in DFG, respectively. They reflect the semantic information
of the given code.

3.2. Encoding source code into vectors

Since neural networks that used for training the detection model
take vectors as input, we need to represent programs as vectors for
vulnerability detection. Transforming a program into vectors directly
may lose its semantic information. In this paper, we firstly represent the
source code as CCG, which can preserve the semantic structure of code.
Then, we transform the nodes of CCG into vectors which can be used
by deep learning. We use the word embedding model Word2vec4 to
transform the textual representation of each nodes into vectors. In order
to further reflect the abstract semantic relationships between words, we
consider the type of each node and add it to the transformed vector
to compute the initial node state. Concretely, we first extract the code
representation of a node and its type through traversing the AST of a
function 𝑓𝑖. For example, in result = num1, result and num1 are
code representations and both of their types are Identifier. Then,
we encode all of the node tokens to achieve code representations by
word2vec and encode node types to achieve type representations by
label encoding. Finally, for each node in the graph, we concatenate the
node representation with the label representation to obtain the initial
representation.

3.3. Training neural network model

Having obtaining the initial node representations that can be used as
input to the deep learning model, we use BGNN to train our detection
model for learning aggregation information because it is suitable for
non-sequential outputs and semantic learning.

We firstly initialize each state vector 𝒉(𝑣) of node 𝑣 from their node
initial representation 𝒙(𝑣). Then, we copy 𝒙(𝑣) into the first dimension
and pad with 0 to make the size of state vectors larger than that of the
node initial representation. To propagate information throughout the
graph, each type of message 𝒎(𝑣)

𝑘 is computed from its current state vec-
tor 𝒉(𝑣) through a linear layer. All the state vectors are updated at the

4 http://radimrehurek.com/gensim/models/word2vec.html.

http://radimrehurek.com/gensim/models/word2vec.html
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Fig. 5. Graph representation of the code.

Fig. 6. Code composite graph (CCG).

Fig. 7. Convolutional feature extraction for classification.
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same time by aggregating all incoming messages through elementwise
summation.

Since source code is more logical and structural than natural lan-
guages, vulnerable code snippets are usually relevant to their context.
We believe that the neural network chosen for learning should be
able to deal with the sequences forward and backward to obtain a
deeper representation and achieve better robustness. In this paper,
we construct a bidirectional graph neural-network (BGNN) by adding
backward edges. For a pair of nodes [𝑢, 𝑣] with an edge 𝑘, we consider
both of its forward edge [𝑢, 𝑣] and backward edge [𝑣, 𝑢]. The original
adjacency matrix constructed by forward edge 𝑘 can be transposed to
obtain corresponding adjacency symmetric matrix, which represents
the backward edge 𝑘′. Therefore, the node information including code
representation, node labels and their link information related to other
neighbors used to capture the interdependencies between source code
can be propagated forward and backward.

Given the aggregated message 𝒎̃(𝑣) and the current state vector
𝒉(𝑣) of node 𝑣, the state of the next step 𝒉′(𝑣) is computed as 𝒉′(𝑣) =
𝐺𝑅𝑈 (𝒎̃(𝑣),𝒉(𝑣)). This computation iterate by 𝑇 times. Then, we use
the state vectors computed by the last time step as the final node
representations.

3.4. Vulnerability detection

Node-level classification tasks [37] identify nodes which are not
labeled by constructing an end-to-end multi-classification framework
with a part of nodes with label. Different from node-level classification
tasks, our vulnerability detection approach is a graph-level classification
task that aims to predict the label of the CCG. If the function 𝑓𝑖 is
vulnerable, its CCG will be labeled as ‘‘1’’. Otherwise, its CCG will be
labeled as ‘‘0’’. The predictive label 𝒚𝑖 of a function 𝑓𝑖 is computed as
follows:

𝒚𝑖 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(
∑

𝑣∈
𝑖([𝑯 (𝑣),𝒙(𝑣)])), (1)

where 𝑖 is a neural network that uses the concatenation of 𝑯 (𝑣) and 𝒙(𝑣),
(𝑣) represents the final node representation, and 𝒙(𝑣) is the initial node

epresentation. Considering that the vulnerable code just accounts for
he small proportion of the whole program, it is difficult to learn the
emantic features of vulnerable code from the whole graph. Therefore,
e use a CNN (including a convolutional layer, a Maxpooling layer and
fully-connected layer) to obtain the semantic features which are more

elated to vulnerabilities. The predictive label 𝒚𝑖 of a function 𝑓𝑖 can be
omputed as follows:

̃𝑖 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑀𝐿𝑃 (𝜎[𝑯 (𝑣),𝒙(𝑣)])), (2)

here 𝜎[𝑯 (𝑣),𝒙(𝑣)] represents a soft attention mechanism that decides
hich nodes are relevant to the current graph-level task. 𝜎(⋅) is short

or 𝜎[𝑯 (𝑣),𝒙(𝑣)] and can be generalized by the following equation:

(⋅) = 𝑀𝐴𝑋𝑃𝑂𝑂𝐿(𝑅𝑒𝑙𝑢(𝐶𝑂𝑁𝑉 (⋅))), (3)

here 𝐶𝑂𝑁𝑉 (⋅) represents 1-D convolution operation, 𝑅𝑒𝑙𝑢(⋅) repre-
ents the activation function aiming to optimize the neural network,
nd 𝑀𝐴𝑋𝑃𝑂𝑂𝐿(⋅) is used to compress the dimension of input features.

Fig. 7 shows our convolutional feature extraction process for classi-
ication. First, the subgraphs of CCG are input into BGNN. After the
raining phase in BGNN, the final state vectors matrix is obtained.
ext, our convolutional feature extraction process consists of three

teps: (1) The final state vectors matrix is put into our convolutional
ayer. Through 1-D convolution, the features of vulnerable code and
on-vulnerable code are extracted. In order to increase the difference
etween the features of vulnerable code and non-vulnerable code, 𝑅𝑒𝑙𝑢,
n activation function, is used to optimize the neural network. (2)
he input features are compressed by a Maxpooling layer, so that the
imension of the feature vectors are reduced and the main features
re extracted. (3) A fully-connected layer is used to connect all the
eatures and send the final features to the classifier for vulnerability
lassification. Finally, we get a well-trained classifier which can predict
6

he target functions whether vulnerable or not.
. Experimental study

.1. Research questions

To evaluate the performance of BGNN4VD, we design the following
esearch questions:
RQ1: How effective is BGNN4VD when compared with state-of-

he-art vulnerability detection approaches?
This question is designed to test the ability of BGNN4VD to detect

ulnerabilities on a same dataset when compared with the state-of-
he-art approaches. To answer this question, we compared BGNN4VD
ith the following state-of-the-art approaches: Flawfinder,5 RATS,6 Sy-
eVR [28], and VUDDY [5]. Both Flawfinder and RATS are rule-based
ulnerability detection tools. They match the vulnerability patterns
n the target program by a built-in C/C++ common vulnerability
atabase. SySeVR is a deep learning-based vulnerability detection ap-
roach that focuses on vulnerabilities that are related to library/API
unction calls. VUDDY is a similarity-based vulnerability detection
pproach which focuses on code clone. We used the default values for
hese models.

In this RQ, for two deep learning-based approaches SySeVR and
GNN4VD, we carried out experiments repeatedly to suppress the
ffects of randomness. For the others, we took the whole dataset as
nput to evaluate their effectiveness.
RQ2: Is the combination of both syntax and semantic edges

eneficial to vulnerability detection?
Syntax and semantic information of source code are also considered

n previous studies. Different from them, our study introduces the
ackward syntax and semantic edges for better learning effect of deep
earning model. Thus, to explore whether the introduction of backward
dges can improve the effect of vulnerability detection, we design this
uestion.

To perform analysis, we added each combination of different edges
nto the model one by one in the setting with same parameters. The
ombinations of edges were divided into only syntax edge (i.e., AST),
nly semantic edges (i.e., CFG and DFG), three forward edges (i.e., AST,
FG and DFG), and six forward and backward edges (i.e., AST, CFG,
FG and their corresponding backward edges). We also ran our model
ith different configurations repeatedly.
RQ3: Can BGNN4VD achieve a substantially higher precision

nd accuracy than only using BGNN without a convolutional mod-
le?

As described in Section 3.4, a convolutional module is used to obtain
eatures related to vulnerabilities. The precision and accuracy of vulner-
bility detection are affected by the extracted features. Therefore, this
uestion is designed to evaluate the contribution of the convolutional
odule.

In this RQ, we compared BGNN4VD with BGNN that without the
onvolutional module under the same parameter configuration and
arried out experiments repeatedly.
RQ4: How effective is BGNN4VD in detecting the latest vulner-

bilities reported by CVE recently?
Different from the above questions based on the dataset we col-

ected, the goal of this question is to test whether our approach can
etect the latest vulnerabilities to show its applicability.

In this RQ, we applied BGNN4VD to detect vulnerabilities in several
atest versions of four software projects (i.e., Linux Kernel, FFmpeg,

ireshark and Libav). We selected the vulnerabilities reported by CVE
f each project since 2020, and manually labeled the vulnerable func-
ions through their reports and diff files. For the latest vulnerabilities
eported by CVE, we needed to add a step to filter those reports whose
tates of CVE entries were RESERVED, DISPUTED and REJECT before

5 http://www.dwheeler.com/flawfinder.
6 https://code.google.com/archive/p/rough-auditing-tool-for-security/.

http://www.dwheeler.com/flawfinder
https://code.google.com/archive/p/rough-auditing-tool-for-security/
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Table 1
Details of vulnerability dataset.

Project NVD(#) VFs(#) Non-VFs(#) IR

Linux Kernel 1152 2484 60,013 24.16
FFmpeg 307 497 7897 15.89
Wireshark 541 709 20,447 28.84
Libav 149 177 3701 20.91
Total 2149 3867 92,058 23.81

adopting the same pre-processing approach as our dataset. Finally, we
only retained vulnerabilities confirmed with fixing patches. This test
set was composed of 113 vulnerable functions which came from 69
vulnerable files.

4.2. Dataset

We chose projects that satisfied the following criteria to construct
our dataset. First, they are C/C++ open source projects since Joern7 we
used for extracting multiple graphs is only suitable for C/C++ projects.
Second, they contain sufficient vulnerabilities with patches so that we
can extract vulnerable code at the function level through their diff files.

According to above two criteria, we chose four popular open source
projects (i.e., Linux Kernel, FFmpeg, Wireshark, and Libav). We col-
lected vulnerability data of each project from two sources: NVD8 and
public Git repositories on GitHub.9 NVD is a vulnerability database built
upon and fully synchronized with the CVE list. In addition to a large
amount of vulnerability data, it also provides enhanced information
(e.g., vulnerability type, references to solutions) additionally for each
record. GitHub provides a larger quantity and wider variety of code,
which can help us supplement the vulnerability dataset. In total, we
collected 2149 vulnerabilities from NVD and GitHub.

After obtaining the vulnerability dataset, we first cleaned dataset by
removing all annotations because they were meaningless in our graph
construction. Then, we manually extracted and labeled functions in
vulnerable files of each vulnerability by analyzing diff files in patches.
Concretely, it involved the following two steps: Step 1: We first split
the vulnerable files as a set of functions and removed header files as
well as externally defined global variables. Step 2: If there were one
or more additions or deletions in a function’s diff file, the label of this
function was ‘‘1’’, and otherwise ‘‘0’’.

Labeling process was completed by the first and fourth authors
independently. Every time 10% vulnerability data were labeled, the
second author checked the consistency of results between them by
Cohen’s kappa coefficient. When the labeling results were inconsistent,
we discussed these inconsistent cases to unify the labeling results. We
continued to label the remaining data only when labeling results of both
authors were identical (i.e., the Cohen’s kappa coefficient was 1). As a
result, 3867 functions were labeled as ‘‘1’’ and 92,058 functions were
labeled as ‘‘0’’.

Table 1 presents the details of our dataset. Column 2 lists the
number of NVD entries in each project. Column 3 lists the number of
vulnerable functions (VFs) extracted in each project. Column 4 lists
the number of non-vulnerable functions (Non-VFs) in each project.
Column 5 lists the imbalanced rate (IR) between vulnerable functions
and non-vulnerable functions.

Our data is available at https://github.com/SicongCao/BGNN4VD.

4.3. Experiment setup

We implemented BGNN4VD in Python with Tensorflow [38]. Since
the dataset we collected is imbalanced (IR = 23.81 in Table 1), we

7 https://joern.readthedocs.io/en/latest/import.html.
8 https://nvd.nist.gov/.
9

7

https://github.com/.
Table 2
Evaluation metrics.

Metric Formula Description

Accuracy 𝐴 = 𝑇𝑃+𝑇𝑁
𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁

The correctness of all detected.

Precision 𝑃 = 𝑇𝑃
𝑇𝑃+𝐹𝑃

The correctness of detected vulnerable.

Recall 𝑅 = 𝑇𝑃
𝑇𝑃+𝐹𝑁

The proportion of true-positive samples
in the total samples that are vulnerable.

F1-measure 𝐹1 = 2⋅𝑃 ⋅𝑅
𝑃+𝑅

The overall effectiveness considering
both precision and false-negative rate.

randomly extracted a subset (including nearly 4000 functions) from
Non-VFs to balance the dataset used for training. Moreover, in order to
ensure the validity of the experimental results, we shuffled and divided
the training/validation/test set into 8:1:1 before each experiment. After
multiple times experiments (20 times in our implementation), the final
evaluation result we adopted was the average of each measurement
metric. Then, to check if the performance difference between a base-
line model and BGNN4VD is statistically significant, we applied the
Wilcoxon signed-rank test10 (a statistical test method corresponding
to paired sample T-test which can compare whether the difference
between the average of two groups is significant or not in the case
of small samples) at a 95% significance level on their performance of
20 times experiments. The hypothesis in each RQ is that there is no
significant difference between BGNN4VD and the baseline models (or
BGNN4VD with different configurations) in detection results, except
RQ4. Our experiments were performed on a computer with a NVIDIA
GeForce RTX 2060 GPU.

The trained hyper-parameters are: the number of time steps is 8;
the size of the hidden layer is 200; batch size is 128; optimizer is
ADAMAX [39]; learning rate is 0.00015; dropout is 0.2; momentum
is 0.85, and patience is 50. We use 𝑛 convolutional filters with shape
𝑚 ×𝐷, so each filter spans the full space of the state vectors. The filter
ize 𝑚 determines the number of sequential tokens that are considered
ogether and we find that a fairly large filter size of 𝑚 = 3 worked

best. Then, we use Relu as activation function and input into Maxpooling
layer. Finally, we combine all the local features into global features
through a fully-connected layer.

4.4. Evaluation metrics

Our approach is evaluated with the widely-used metrics which is
summarized in Table 2. Table 2 shows the metrics, their computation
formulas and the corresponding description. Among these metrics,
TP indicates the number of vulnerable samples that are detected as
vulnerable; FP indicates the number of samples that are not vulnerable
but are detected as vulnerable; TN indicates the number of samples that
are not vulnerable and are detected as not vulnerable; and FN indicates
the number of vulnerable samples that are detected as not vulnerable.

Based on the four possible outputs of binary classification (i.e., TP,
FP, TN, FN), we compute the following performance measures: Accu-
racy (A), Precision (P), Recall (R), and F1-measure (F1). Accuracy is
a measure of true-positive and true-negative samples coverage, which
shows the ability of predicting examples correctly. The Accuracy is the
ratio of true-positive and true-negative samples to the total samples
detected. Precision indicates how many of the samples predicted to
be positive are truly positive samples. It is defined by the ratio of
true-positive samples divided by the total samples that are detected
as true. Recall is a measure of true-positive sample coverage. It shows
the ability to predict positive examples. It is the ratio of true-positive

10 Note, since we only conducted our experiments 20 times and the exper-
imental data did not meet the normal distribution, the Wilcoxon signed-rank
test may be more suitable than others.

https://github.com/SicongCao/BGNN4VD
https://joern.readthedocs.io/en/latest/import.html
https://nvd.nist.gov/
https://github.com/
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samples to the total samples that are classified correctly. F1-measure
(F1) indicates the overall effectiveness that considers both precision
and recall. It is the harmonic mean of Recall and Precision.

5. Experimental results

5.1. Experiments for answering RQ1

Table 3 shows the experimental results of BGNN4VD versus 4 base-
ines on vulnerability detection capability. We can find that BGNN4VD
utperforms over the baseline methods in terms of Accuracy (74.7%),
ecall (76.3%), Precision (77.3%), and F1-measure (76.8%). Table 3
lso presents the p-values (tested by the Wilcoxon signed-rank test)
hen comparing BGNN4VD with the baselines in terms of F1-measure.
e can observe that BGNN4VD shows significant improvements (p-

alue < 0.05) over others.
In order to measure the improvements of our approach in detection

erformance compared to baselines, we calculate the percentage of
mprovement by the following formula:

𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 =
𝑆𝑐𝑜𝑟𝑒𝐵𝐺𝑁𝑁4𝑉 𝐷 − 𝑆𝑐𝑜𝑟𝑒𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝑠

𝑆𝑐𝑜𝑟𝑒𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝑠
(4)

Compared with SySeVR, BGNN4VD achieves 4.9% higher on F1-
easure, 11.0% higher on accuracy, 1.5% higher on recall and 8.4%
igher on precision. It is attributed to graph representations on the
earning of syntax and semantics, making it easier to express the
eatures of the vulnerabilities. In addition, several RNNs (e.g., LSTM,
RU) are used in SySeVR to train the detection model. Due to the
oor performance of RNNs in handling the non-sequential features
f graph-based data, some vital features may be ignored or masked.
y contrast, the use of Bidirectional Graph Neural Network (BGNN)
akes BGNN4VD more efficient in learning the features of graph-based
ata and accommodating context information through its bidirectional
dges. But we also find that the results of SySeVR in our experiment are
ower than what are shown in the original paper [28]. There are mainly
wo reasons for this. On the one hand, in the previous experiment of
ySeVR, they focus on vulnerabilities related to library/API function
all, array usage, pointer usage, and arithmetic expression. Constraints
n the types of vulnerabilities make their result outstanding but limited.
n our experiment, we take all types of vulnerabilities into considera-
ion. Though our results seem to be lower, the performance in detecting
ther vulnerabilities not included in the four types discussed above is
etter. On the other hand, the vulnerability dataset they used are mixed
nd only a small part of vulnerabilities are real-world vulnerabilities.
he dataset they used are reported by NVD and SARD11 (Software As-
urance Reference Dataset). Different from real-world vulnerabilities in
VD, vulnerabilities reported by SARD are test cases which are mostly

ynthetic code (written to test or generated) and test cases (written
y students). Due to the high degree of similarity between different
ases, a large proportion of vulnerabilities in SARD used for training
ake the classifier have a bias in detecting real-world vulnerabilities

n NVD [40].
In addition, we find that Flawfinder and RATS can achieve about

0% on accuracy, but are terrible on other measures. This is due to
he limitations of static analysis tools, which leads to a high false-
ositives rate (i.e., its recall is low, and less than 20%). Similarly,
UDDY is based on code similarity and it can only detect specific

ypes of vulnerabilities. Its recall and precision are also low (15.7%
nd 43.3%, respectively). Compared with these approaches, BGNN4VD
xtracts the syntax and semantic information from multiple code graphs
o effectively distinguish the subtle difference between vulnerability
ode and non-vulnerable code.

Moreover, we find that the precision scores achieved seemingly to
e low in all methods. There may be two reasons for this. First, our

11 https://samate.nist.gov/SRD/index.php.
8

Table 3
Vulnerability detection capability of the state-of-the-art methods and BGNN4VD. A:

ccuracy; R: Recall; P: Precision.
Method F1(%) A(%) R(%) P(%) p-value

Flawfinder 28.6 51.9 19.9 50.5 0.027
RATS 19.3 48.8 14.8 27.9 0.016
SySeVR 73.2 67.3 75.2 71.3 0.039
VUDDY 23.1 72.9 15.7 43.3 0.021
BGNN4VD 76.8 74.7 76.3 77.3 –

Table 4
The effect of different types of edges in vulnerability detection. A: Accuracy; R: Recall;
P: Precision.

Types of edges F1(%) A(%) R(%) P (%) p-value

Only syntax edge 71.7 70.2 73.2 70.3 0.020
Only semantic edges 70.4 70.9 72.3 68.6 0.014
Three forward edges 75.4 72.9 74.4 76.4 0.041
Forward and backward edges 76.8 74.7 76.3 77.3 –

approach detects vulnerabilities at the function level, but a vulnerable
function we detected contains only one or several vulnerable state-
ments. Too many statements are included while some of them are not
relevant to th vulnerability. Second, due to the small amount of data
available for training and testing on the CVE dataset we collected, our
model may over fit easily when there are too many parameters needed
to be adjusted. It leads to the fact that the classifier we trained still has
certain bias. We have tried to improve the generalization ability of the
model through dropout and other methods in our experiment.

Based on the above analysis, we get the following finding.

Finding 1: BGNN4VD is more effective than the state-of-the-art
approaches.

5.2. Experiments for answering RQ2

The experimental results of different combinations are shown in
Table 4. Overall, our approach outperforms combinations of other types
of edges in terms of Accuracy, Recall, Precision, and F1-measure. It also
shows significant improvements (p-value < 0.05).

When considering either syntax or semantic edges, the difference of
accuracy and F1-measure between two types of edges is not obvious.
Moreover, we find that only considering syntax edge (i.e., AST) has
1.9% improvement in F1-measure than only considering semantic edges
(i.e., CFG and DFG). The reason may be that in the construction
process of graphs, syntax edges link all token nodes in the program
while semantic edges only link statements and predicate nodes, which
makes the learning effect of syntax edge slightly greater than semantic
edges. When compared with different types of edges in the training
phase, using all six forward and backward edges can improve recall
and precision by 4.1% and 8.0% on average, respectively. The reason
is that, combining forward and backward edges can accommodate
more information of the statements before and after the vulnerable
statement.

Based on the above analysis, we get the following finding.

Finding 2: Using all six forward and backward edges is more effective
than other combinations of edges.

https://samate.nist.gov/SRD/index.php
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Table 5
Comparison between BGNN4VD and BGNN. A: Accuracy; R: Recall; P: Precision.

Neural network F1(%) A(%) R(%) P(%) p-value

BGNN 74.2 71.9 75.4 73.0 0.031
BGNN4VD 76.8 74.7 76.3 77.3 –

Table 6
A part of vulnerabilities detected by BGNN4VD on the real-world dataset.

Target project CVE ID Vulnerable file Release date

Linux Kernel

CVE-2020-12771 drivers/md/bcache/btree.c 05/09/2020
CVE-2020-12770 drivers/scsi/sg.c 05/09/2020
CVE-2020-12464 drivers/usb/core/message.c 04/29/2020
CVE-2020-11494 drivers/net/can/slcan.c 04/02/2020

FFmpeg CVE-2020-12284 libavcodec/cbs_jpeg.c 04/28/2020

Wireshark CVE-2020-13164 epan/dissectors/packet-nfs.c 05/19/2020
CVE-2020-11647 epan/dissectors/packet-bacapp.c 04/10/2020

5.3. Experiments for answering RQ3

The comparison results of BGNN4VD and BGNN are reported in
Table 5. We can see that, comparing with using BGNN only, BGNN4VD
shows significant improvements (p-value < 0.05) on vulnerability de-
tection capability. Concretely, BGNN4VD achieves 3.9% higher on accu-
racy, 1.2% higher on recall, 5.9% higher on precision, and 3.5% higher
on F1-measure. This can be explained by the fact that BGNN aggregates
information for each node based on the entire graph. However, for
vulnerable functions, the proportion of vulnerable statements in the
function is often much smaller than that of non-vulnerable statements.
This hinders effective classification over entire graphs [41]. To alleviate
this problem, BGNN4VD refines the learned features through a CNN

odule (including a convolutional layer, a Maxpooling layer and a
ully-connected layer), and classifies them through MLP.

Based on the above analysis, we get the following finding.

Finding 3: BGNN4VD achieves a higher vulnerability detection
precision and capability than only using BGNN for detecting
vulnerabilities.

5.4. Experiments for answering RQ4

During the experiment, we detected 51 of 113 vulnerable functions,
with a precision of 45.1%. This shows the feasibility of BGNN4VD in
ractical application.

For example, in CVE-2020-12284,12 which is shown in Table 6, this
vulnerability occurs due to a missing length check. Through BGNN4VD,
it can be easily detected because this type of vulnerabilities is closely
related to control flow and data flow. Therefore, the semantic feature
of this vulnerability can be modeled by combining CFG and DFG.
Furthermore, we manually examined the vulnerable code and find that
BGNN4VD show a poor performance when faced with vulnerabilities
which are caused by lacking control constraints. For example, in CVE-
2020-11668,13 the vulnerable file xirlink_cit.c misses descriptor sanity
checks and may result in NULL-pointers and memory corruption. This
vulnerability is caused by the lack of exception handling for unexpected
descriptors. This kind of vulnerabilities rely on run-time properties,
making it hard to be detected by graph modeling.

Based on the above analysis, we get the following finding.

12 https://nvd.nist.gov/vuln/detail/CVE-2020-12284.
13 https://nvd.nist.gov/vuln/detail/CVE-2020-11668.
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l

Finding 4: BGNN4VD still performs well in detecting the latest
reported vulnerabilities of real-world software projects.

6. Threats to validity

In this section, we discuss the threats to our study, including exter-
nal threats and internal threats.

External threats. One of the main external threats to our study
is the reliability of the data sources. For example, it is important to
evaluate the quality of dataset because these data may have some
wrong items and are unbalanced in different projects. In addition,
since the vulnerability dataset we constructed only contains C/C++
projects, the detection results on our dataset may be specific to the
vulnerabilities we included and not applicable to projects written in
other programming languages. However, our approach is general be-
cause techniques we used are not tied to programming languages. In
the practical application, developers can apply our approach to detect
potential vulnerabilities for evaluating the security of their products
and the detection model of our approach can be trained based on their
own vulnerability dataset. Another problem is about the accuracy of the
labels. Incorrect labels will directly affect the classification results of the
deep learning model. In this paper, we labeled and checked vulnerabil-
ity data from NVD and GitHub manually. This reduces the probability
of mislabeling. Furthermore, since extracting and computing AST, CFG
and DFG is time-consuming, we filtered out those vulnerabilities with
node size larger than 400 (nearly 13% in our dataset) to improve
the efficiency of BGNN4VD. In order to process the larger graphs
effectively, we plan to use program slicing techniques to reduce the
number of irrelevant code.

Internal threats. There are also some internal threats in our im-
lementation. Many uncertain issues in the data processing phase and
odel training phase, such as sample imbalance and hyper-parameter

djustment may threaten the validity of our approach. With the size
f the dataset increasing, more and more factors need to be controlled
n the experiment. It is easy to cause accidental experimental results.
o alleviate this potential threat, we randomly shuffled the dataset in
same proportion and used validation set to test the generalization

erformance of the model. We also plan to use Best Linear Unbiased
stimation (BLUE) to evaluate the selection of parameters of our model
n the near future. In addition, our experiment only considers AST in
he learning of syntax information of the program. In certain aspects, it
ay mask some other specific syntax information such as library/API

unction calls and so on.

. Related work

In this section, We review the most closely related work in four as-
ects, i.e., bug detection, metric-based vulnerability detection, pattern-
ased vulnerability detection, and bytecode-level vulnerability detec-
ion.
Bug detection. Many techniques have been developed for bug

etection. In existing bug detection approaches [20,22–26,42], several
rogramming rules are predefined to statically detect common pro-
ramming flaws or defects. Nam et al. [20] proposed novel approaches,
LA and CLAMI, that show the potential for defect prediction on unla-
eled dataset in an automated manner through labeling an unlabeled
ataset by using the magnitude of metric values. Pradel et al. [42]
resented DeepBugs, a learning approach to name-based bug detection,
hich reasons about names based on a semantic representation and
hich automatically learns bug detectors instead of manually writing

hem. To address the challenge that effectively learning a bug detector
equires examples of both correct and incorrect code, they created

ikely incorrect code examples from an existing corpus of code through

https://nvd.nist.gov/vuln/detail/CVE-2020-12284
https://nvd.nist.gov/vuln/detail/CVE-2020-11668
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simple code transformations. However, bug detection approaches can-
not be used to detect vulnerabilities directly because not all bugs belong
to vulnerabilities.

Metric-based vulnerability detection. In these approaches, vul-
erability detection is based on some metrics (or rules) defined by
uman experts. These metrics mainly contain seven categories: co-
esion metrics, complexity metrics, coupling metrics, documentation
etrics, inheritance metrics, code duplication metrics, and size metrics.
ounis et al. [43] selected eight code measures (including line of code,
egree of nesting, information flow, calling function and so on) to
escribe vulnerability characteristics from Linux and Apache HTTP
erver. They tested the predictive ability of the selected measures
sing four classifiers. Du et al. [4] proposed a generic, lightweight and
xtensible framework which combined code complexity metrics with
ulnerability metrics to rank the functions and identifies the top ones
s potentially vulnerable. Different from their methods, our work uses
eep learning-based approaches instead of hand-craft metrics, which
oes not rely on human experts to define features and can achieve lower
alse-negative rates.
Pattern-based vulnerability detection. Li et al. [27,28] proposed

wo vulnerability detection systems based on deep learning (i.e.,
ulDeePecker and SySeVR). VulDeePecker used code gadget to represent
rograms and then transformed them into vectors to automatically
earn vulnerability patterns. SySeVR was based on syntax and semantics
nd can fully consider data dependence and control dependence. They
ncoded the obtained slice data into vectors to input BGRU for learning
he characteristics of vulnerabilities. For the above two models, they
eed to truncate the vectors transformed when vectors are longer
han a threshold, which will lose part of the information. Our model
etains the syntax and semantic information by using a larger state
ector through padding of node features, which makes our model more
xpressive. Closest to our work is the work of Zhou et al. [32] who
roposed a graph neural network-based model for graph-level classifi-
ation through learning on a rich set of code semantic representations.
t included a novel Conv module to efficiently extract useful features
n the learned rich node representations for graph-level classification.
ur work is based on BGNN by introducing forward edges and their
ackwards edges, which can speed up information propagating and
mprove the accuracy of vulnerability detection.
Binary-level vulnerability detection. Several methods have pro-

posed to detect vulnerabilities in bytecode [13–15,17,19]. Bytecode is
a kind of code between the source code and the machine code, which
can represent the semantic information of the code at a lower-level and
executed directly in the virtual machine such as Java, Python, and PHP.
It can reduce hardware and operating system dependence by allowing
the same code to run cross-platform and has shown performance advan-
tage on vulnerability detection. Guo et al. [13] presented VulHunter,
an automated vulnerability detection system based on deep learning
and bytecode. With graph-based static analysis methods, VulHunter
could find the code related to the vulnerability and then transformed
it into bytecode slices. VulHunter achieved good performance for SQL
injection, XSS and mixed types vulnerabilities detection respectively.
Xu et al. [17] proposed the Binary X-Ray (𝐵𝑖𝑛𝑋𝑟𝑎𝑦), a patch based
vulnerability matching approach, is proposed to identify the specific 1-
day vulnerabilities in target programs accurately and effectively. They
designed a basic block mapping algorithm to extract the signature of a
patch and applied the semantics of patches to reduce irrelevant basic
block traces to speed up the signature searching. These approaches have
different features and face different challenges. Therefore, we did not
compare BGNN4VD with them.

8. Conclusion

We present BGNN4VD, a bidirectional graph neural network-based
vulnerability detection approach. We add the backward edges during
the model training phase to learn rich syntax and semantics information
10
of programs and use a convolutional layer to extract outputs for classi-
fication. The evaluation results show that BGNN4VD achieves a higher
precision and accuracy than the state-of-the-art methods. In addition,
we apply BGNN4VD on the latest vulnerabilities reported by CVE, and
BGNN4VD can achieve a precision at 45.1% , which demonstrates the
feasibility of BGNN4VD in practical application.

In future work, we will improve our study in two aspects. First,
we only focus on three types of edges and their backward edges.
Future research should be conducted by considering more types of
edges to increase the performance of vulnerability detection. Second,
we evaluate BGNN4VD on C/C++ projects. In the future, we will try
to develop a general graph mining tool for different programming
languages to extract different types of code graphs.
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