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Abstract—As with anything connected to the Internet, Internet
of Things (IoT) devices are also subject to severe cybersecurity
threats because an adversary could exploit vulnerabilities in
their internal software to perform malicious attacks. Despite the
promising results of deep learning (DL)-based approaches, the
lack of well-labeled IoT vulnerability samples available for train-
ing and explainability pose a critical challenge to deploy them in
practice. In this article, we propose EXVUL, a novel DL-based
approach for Effective and eXplainable IoT VULnerability detec-
tion. Specifically, inspired by recent advances of self-supervised
learning in label-expensive tasks, we propose a new combinatorial
contrastive loss to combine the strengths of large-scale unlabeled
code corpus and limited IoT vulnerability samples. Then, given
a binary detection result, EXVUL provides a set of faithful
and stable code statements positively contributing to the model’s
predictions as understandable explanations. Experimental results
indicate that EXVUL outperforms state-of-the-art baselines by
33.44%-72.91% and 19.52%-98.78% with respect to the accuracy
and F1 score metrics, respectively. For vulnerability explanation,
EXVUL improves over the best-performing baseline explainer
PGExplainer by 22.97% in mean statement precision, 49.55%
in mean statement recall, and 48.40% in mean intersection over
union, demonstrating that the explanations provided by EXVUL
can correctly point out the vulnerable statements relevant to the
detected vulnerabilities.
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I. INTRODUCTION

THE Internet of Things (IoT) landscape and its smart
devices are spreading in all aspects of our society, such

as autonomous vehicles and smart grids, improving service
delivery and increasing productivity. As reported in [1], the
global number of connected IoT devices is expected to grow
by 16%, to 16.7 billion active endpoints by 2023. In the
meanwhile, as with anything connected to the Internet, IoT
devices are also subject to security threats, leading to severe
economic loss and equipment damage. One of the most
common IoT security threats is software vulnerabilities [2],
which arise from bugs in code as well as from insecure system
settings that can be exploited by threat actors for a variety of
malicious ends.

Benefiting from the great success of deep learning (DL)
on IoT security [3], an increasing number of learning-based
vulnerability detection approaches [4], [5], [6], [7] have been
proposed. Compared to conventional approaches [8], [9], [10]
that heavily rely on hand-crafted vulnerability specifications,
DL-based approaches focus on constructing complex neu-
ral network (NN) models to automatically learn implicit
vulnerability patterns from source code without human inter-
vention. Recently, inspired by the ability to effectively
capture structured semantic information (e.g., control- and
data-flows) of source code, graph NNs (GNNs) have been
widely adopted by state-of-the-art neural vulnerability detec-
tors [11], [12], [13], [14].

While demonstrated superior performance, these approaches
face two challenges that limit their potential when applied to
detecting vulnerabilities on IoT devices:

1) Insufficient Labeled Data Set: Almost all DL-based
vulnerability detection approaches follow the supervised
learning paradigm, i.e., training a best-performing detec-
tion model over a well-labeled vulnerability datasets.
However, collecting such a large-scale dataset with
human annotations for software vulnerabilities in prac-
tice is time-consuming and error-prone, let alone for IoT
vulnerabilities. For example, one of the most popular
benchmarks, FFmpeg+QEMU [12], which contains +22K
functions with 45.66% of the vulnerable ones, was man-
ually labeled by four professional security researchers
for 600 man-hours. What is worse, as reported in a
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Fig. 1. Explanation results (i.e., vulnerability-related contexts highlighted
by “1”) achieved by a leading vulnerability explainer IVDetect on the same
vulnerable code in Linux Kernel.

recent work [15], existing vulnerability datasets are
prone to varying degrees of quality issues such as noisy
labels and duplication, which may seriously degrade the
reliability of detection models.

2) Lack of Explainability: Due to the black-box nature of
NN models, GNN-based approaches fall short in the
capability to explain why a given code is predicted
as vulnerable [13], [16]. Such a lack of explainability
could hinder their adoption when applied to real-world
usage as substitutes for traditional security analyz-
ers [17]. To reveal the decision logic behind the binary
detection results (vulnerable or not), several approaches
have been proposed to provide additional explanatory
information [18]. For example, IVDetect [14] lever-
ages a model-agnostic explanation approach, named
GNNExplainer [19], to simplify the detected vulnerable
code to a minimal program dependence subgraph con-
sisting of a set of crucial statements along with program
dependencies while retaining the initial model prediction
as explanations. Unfortunately, due to the complexity of
code structures and the diversity of candidate program
subsets, existing instance-based explanation approaches
may break the criteria of stability, i.e., such extracted
explanations may not be consistent with the same input
for different runs. A failure case is shown in Fig. 1,
a memory leak vulnerability occurs when the allocated
buf (at line 3) is not released in case of error or success
return, allowing attackers to cause a denial of service.1

In the first run, IVDetect identifies statements at line 3,
4, 7, 9 as vulnerable, while in the second run, it turns to
pinpoint statements at line 4, 5, 6, 8 as explanations. As
a result, explanations provided by existing approaches
fail to faithfully reflect the decision mechanism of the
detection model, making the security practitioners quite
confused and not trust the explanation results.

To tackle the above two challenges, we propose a novel DL-
based approach, named EXVUL, for Effective and eXplainable
IoT VULnerability detection. The key insights underlying
our approach include (❶) combining the strengths of large-
scale unlabeled code corpus and limited labeled data to train
an effective IoT vulnerability detection model, as well as
(❷) providing both faithful (reflecting the decision mech-
anism of the to-be-explained detection model) and stable

1https://nvd.nist.gov/vuln/detail/CVE-2019-19079

(explanation results are consistent with the same input for dif-
ferent runs) explanations. Specifically, to solve the first issue,
EXVUL adopts a novel combinatorial contrastive learning
(CL) paradigm to facilitate learning better code representations
in a self-supervised manner for the downstream detection task,
while making use of limited label information to distinguish
IoT vulnerable code from benign ones. To address the second
issue, we propose a deviation-aware strategy, which aligns
the feature embedding of the input code snippet with its
explanatory candidate set in the latent space to improve
inconsistency, and incorporate it into GNNExplainer to obtain
more faithful and stable explanations.

To evaluate the effectiveness of our proposed EXVUL, we
conduct experiments on a real-world IoT vulnerability dataset
composed of 1471 vulnerable functions. The experimental
results show that EXVUL significantly outperforms the state-
of-the-art baselines from 33.44% to 72.91% in terms of
Accuracy, and from 19.52% to 98.78% in terms of F1, indicat-
ing the effectiveness of EXVUL in IoT vulnerability detection.
Besides, EXVUL improves over the best-performing baseline
explainer PGExplainer by 22.97% in mean statement precision
(MSP), 49.55% in mean statement recall (MSR), and 48.40%
in mean intersection over union (MIoU), demonstrating that
the explanations provided by EXVUL can correctly point out
the vulnerable statements relevant to the detected vulnerabili-
ties. Finally, this article makes the following contributions.

1) We propose a research problem that the lack of labeled
data and explainability pose a critical challenge to
migrate existing DL-based approaches to IoT vulnera-
bility detection and need to be treated together.

2) We propose EXVUL, a novel DL-based approach
for effective and explainable IoT vulnerability detec-
tion. EXVUL adopts a combinatorial CL paradigm to
train a well-performing detection model over limited
IoT vulnerability samples, and incorporates a novel
deviation-aware alignment strategy into the state-of-the-
art explanation approach GNNExplainer to provide both
faithful and stable explanations.

3) Extensive experimental results and user study show
substantial improvements EXVUL brings to IoT vulner-
ability detection and explainability.

The rest of this article is organized as follows. Section II
introduces the background knowledge related to our problem.
Section III describes the details of our approach. Section IV
presents the experimental setup and results. Section V dis-
cusses the possible threats to validity. Section VI reviews the
related work. Finally, Section VII concludes this article and
outlines our future research agenda.

II. BACKGROUND

In this section, we briefly introduce the general pipeline of
DL-based vulnerability detection and explanation. Then, we
discuss related techniques used in our approach, including CL
and GNN-specific explanation framework.

A. Problem Definition

Following [14] and [20], explainable vulnerability detection
(EVD) is generally expanded from a well-trained binary
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Fig. 2. Workflow of DL-based vulnerability detection and explanation.

classifier by appending a post-hoc explainer, and the “classifi-
cation with explanation” workflow for an individual instance
can be illustrated as Fig. 2. The definitions of EVD and its
two components (the detector and explainer) are formalized
as:

DEFINITION 1 (EVD): Given a code snippet C, EVD
first performs feature engineering to embed it into a feature
representation H, and then generates two outputs, respec-
tively, from its detector and explainer: a predicted label
Y ∈ {0, 1} with 1 for vulnerable and 0 otherwise, and
an explanation E indicating why the sample is predicted as
vulnerable.

DEFINITION 2 (DETECTOR): The detection pipeline can
be further decoupled into two components, a feature encoder
and a classifier. It is defined as Y = g(f (H)), where the
feature encoder f (·) learns to capture vulnerability-related
features from H, and the classifier g(·) assigns it a binary
label Y .

DEFINITION 3 (EXPLAINER): Given a code snippet C
detected as vulnerable, i.e., Y = 1, the explanation E is
a set of important features H′ ∈ H positively (or above a
certain threshold) contributing to the model’s prediction. These
important features imply the risky behaviors of the vulnerable
code.

B. Contrastive Learning

Given that the limited labeled data in downstream tasks,
CL, a popular self-supervised learning paradigm, has emerged
as a promising approach in computer vision (CV) [21] and
natural language processing (NLP) [22] for learning better
feature representations without supervision from labels [23].
The goal of CL is to maximize the agreement between original
sample and its positive (i.e., similar) variant while minimizing
the agreement between original sample and a negative (i.e.,
dissimilar) sample. Positive sample x+ is a semantically
equivalent (SE) variant derived from the anchor x by applying
built-in pretext tasks (also known as data augmentation), while
negative sample x− is the other sample different from x. The
general pipeline of CL is shown in Fig. 3. The positive sample
x+ of an image x is constructed by data augmentation such
as rotation and cropping. Then, x+ and x will be fed into the
feature encoder with other images x− (labeled as negatives)

Fig. 3. Self-supervised CL pipeline.

Fig. 4. Neighborhood aggregation scheme in GNNs.

to produce better embeddings via minimizing the contrastive
loss function.

C. GNN-Specific Explanation Framework

Due to the outstanding representation learning ability for
structured graph data, GNNs [24] have been applied to a
variety of research domains such as natural science [25],
knowledge graphs [26], and blockchain [27]. As shown in
Fig. 4, modern GNNs mostly follow a neighborhood aggrega-
tion scheme, where the node feature is updated by iteratively
aggregating message from its κ-hop neighbors, to capture the
semantic features from the graph structure. This procedure can
be formulated by

h(t)
v = σ

(
h(t−1)

v , AGG(t)
({

h(t−1)
u : u ∈ N (v)

}))
(1)

where h(t)
v is the feature representation of node v ∈ V at the tth

iteration, u ∈ N (v) is the neighbors of v, and AGG(·) and σ(·)
denote aggregation (e.g., MEAN) and activation (e.g., ReLU)

functions for node feature computation. After iterating T time
steps, the final node representation matrix H(T)

k = {h(T)
v }Vv=1

of graph Gk is used for downstream tasks.
Despite their effectiveness, the lack of explainability creates

key barriers to the adoption of GNNs in practice. Recently,
several studies [19], [28] have attempted to explain the deci-
sions of GNNs by applying a perturbation-based strategy,
a representative effort is GNNExplainer [19]. Typically, it
formulates the problem by maximizing the mutual information
(MI), which quantifies the consistency between original
predictions and prediction of candidate explanation, between
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Fig. 5. Overall architecture of our proposed EXVUL.

the minimal explanatory substructure G′
k of the kth graph Gk

and its predicted label Ŷ:

max
G′

k

MI(Ŷ,G′
k) = H(Ŷ) − H

(
Ŷ|G = G′

k

)
(2)

where H(Ŷ) is the entropy term and H(Ŷ|G = G′
k) is the

conditional entropy term.
For optimization, GNNExplainer treats the subgraph G′

k as
a random graph variable G and leverages edge mask to find
a subgraph that can best predict the original output Ŷ as
follows:

min
G

EG′
k∼GH

(
Ŷ|G = G′

k

)
. (3)

After optimization, the subgraph G′
k is the generated

explanations for the prediction of the input graph Gk.

III. OUR APPROACH: EXVUL

In this section, we present the details of our novel approach
named EXVUL, which integrates accurate binary results and
understandable explanations for effective and explainable IoT
vulnerability detection.

A. Overview

Fig. 5 shows the overall architecture of our proposed
EXVUL approach, which consists of three main phases:
model training, vulnerability detection, and vulnerability
explanation.

The model training phase includes three steps. In Step 1
(Section III-B), EXVUL conducts multiple semantically-
preserving transformation on unlabeled code corpus to
construct equivalent variants and arranges them into a mini-
batch for self-supervised CL. The labeled dataset (including
vulnerable code and their corresponding patched version)
is fed into another mini-batch for supervised CL. Then, in
Step 2 (Section III-C), both unlabeled and labeled samples
are embedded into numerical graph representations through
graph construction and code embedding, and then fed into

TABLE I
SEMANTIC-PRESERVING TRANSFORMATIONS WE

ADOPTED FOR DATA AUGMENTATION

an attention-based GNN to extract representative features.
Finally, in Step 3 (Section III-D), a well-performing IoT
vulnerability detection model is produced by performing our
novel combinatorial CL over the representations of both
unlabeled and labeled code samples in the latent feature
space.

In the vulnerability detection phase (Section III-E), EXVUL

first splits the target program into functions and repeats
feature extraction (Step 2) to obtain corresponding vector
representations. Then, for each code snippet, both unstructured
node embeddings and structured relations are feed into the
well-trained detection model for classification.

In the vulnerability explanation phase (Section III-F),
EXVUL incorporates a novel deviation-aware alignment
strategy into the state-of-the-art explanation approach
GNNExplainer to provide both faithful and stable
explanations.
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B. Data Augmentation

In order to construct positive variants of unlabeled pro-
grams for self-supervised CL, we first perform static analysis
to parse each source code into an abstract syntax tree
(AST) and traverse it to search for potential injection loca-
tions. Following [29], once an injection location is found,
an applicable augmentation operator � ∈ {φ1, φ2, . . . , φ6}
(shown in Table I) will be randomly selected and applied to get
the transformed node. We then adapt the context accordingly,
and translate it to the positive variants. Subsequently, we
arrange original code samples along with their SE vari-
ants (i.e., positives) as inputs in a mini-batch. In this way,
augmented samples originated from one pair are negatively
correlated to any sample from other pairs within a mini-batch
during self-supervised CL. For supervised CL, we directly
regard samples with the same label as positives and the others
as negatives.

C. Feature Extraction

After data augmentation, both unlabeled original-variant
sample pairs and labeled vulnerability dataset should be
converted into feature embeddings acceptable for DL models.
In particular, feature extraction includes three main steps,
including graph construction, code embedding, and graph
representation learning.

1) Graph Construction: To model the discriminative fea-
tures beneficial to distinguishing vulnerable and benign code,
we first perform static analysis to generate a joint graph
structure, code property graph (CPG) [30], for each input
code at the function-level. CPG is a classic abstract repre-
sentation, which integrates AST, control flow graph (CFG),
and program dependence graph (PDG), in security-related
program analysis and has been proved to be a powerful tool
for vulnerability discovery [13], [31]. Fig. 6 shows a simple
code sample and its corresponding CPG. AST organizes source
code as a tree to reflect its syntax structure, while CFG and
DFG provide the control- and data-flow information between
statements. These structured code representations preserve
rich syntactic and semantic information beneficial to feature
representation learning. The node set N of CPG is composed
of statement nodes in CFG (or PDG) and leaf nodes in
AST, and the edge set R is composed of three types of
relations.

2) Code Embedding: After graph construction, we convert
the code tokens of each CPG’s node into low-dimensional
vector representation for subsequent feature representation
learning. Specifically, to effectively alleviate the vocab-
ulary explosion problem, we first perform abstraction
on user-defined identifiers by replacing formal parameters
and local variables defined by developers with a nor-
malized symbol PARAM_i and VAR_j, respectively. Then,
we use Word2Vec [32] to encode leaf nodes in AST.
Considering some important structure information may be
lost when converting graphs into low-dimensional vectors
with Word2Vec, we use Node2Vec [33] as an alternative to
encode statement nodes in CFG and PDG. Node2Vec can
capture data dependency and control dependency between

statements because it transfers the information of two nodes
bidirectionally and encodes a node with the information
from its surrounding structures. In addition, we consider the
abstract type of each node (e.g., Identifier, Variable)
since it reflects the code property represented by each node,
making the vulnerability patterns more general. We encode
the abstract type of each node by label encoding, which
transforms text into numerical value. Finally, we concatenate
the node representation Cv of each node v ∈ N with
the type representation Tv as the initial representation as
follows:

h(0)
v = Cv||Tv (4)

where || denotes the concatenation operator.
3) Graph Representation Learning: To capture global vul-

nerability semantics for classification, we employ GAT [34],
a state-of-the-art GNN with multihead attention, to iteratively
propagate and aggregate node information along with different
edges. Formally, given a CPG node v, its node representation
after tth iteration is updated as

h(t+1)
v = 1

|R|
∑
r∈R

⎛
⎝σ

⎛
⎝ ∑

u∈Nr

α(t)
v,uz(t)

u

⎞
⎠

⎞
⎠ (5)

z(t)
u = W(t)

r h(t)
u (6)

where R is the types of edges in CPG, and | · | represents the
size of a set. σ denotes the activation function, which we use
LeakyReLU here. Nr represents the 1-hop neighbors of node
v under the edge r. Wr represents the weight matrix under the
edge r. αv,u represents the attention weight between the node
v and its neighbor u under the edge r

α(t)
v,u =

exp
(

e(t)
v,u

)

∑
p∈Nr

exp
(

e(t)
v,p

) (7)

e(t)
v,u = σ

(
�ar

(t)T
(

z(t)
v ||z(t)

u

))
(8)

where �ar
T denotes the transposition of a learnable weight

vector. || denotes the concatenation operation. ev,u can be
regarded as the association degree between node v and its
neighbor node u.

D. Contrastive Learning

To alleviate the labeled data scarcity issue, we propose a
new combinatorial CL-based training strategy to combine the
strengths of large-scale unlabeled code corpus and limited
IoT vulnerability dataset. Specifically, for unlabeled code
samples along with their SE variants (positives), we com-
pute self-supervised contrastive (SupCon) loss to learn better
code presentations. Meanwhile, for labeled IoT vulnerability
dataset, we calculate SupCon loss based on vulnerable code
and their patched version. Below, we elaborate on each
component of our CL with more technical details.

1) Self-Supervised Contrastive Loss: Specifically, given a
set of N randomly sampled unlabeled code pairs {c̃i}, where
c̃2d−1 and c̃2d are the original and augmented view of
{cd}d=1,...,N , respectively, in the mini-batch B ≡ {1, . . . , 2N},
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Fig. 6. Exemplary code sample (left) and its corresponding CPG (right).

we employ the noise contrastive estimate (NCE) [21] to
compute the self-supervised loss Lself

con

Lself
con = 1

|B|
∑
i∈B

−log
exp(H′

i · H′
j(i)/τ )∑

a∈A(i) exp(H′
i · H′

a/τ)
(9)

where H′
i represents the low-dimensional embedding of the

graph-level representation H(T)
i = {h(T)

v }Vv of an arbitrary
(original or augmented) sample c̃i via a projection head
consisting of a MLP layer with a single hidden layer. j(i) is
the index of the other view originating from the same source.
τ ∈ R+ is the temperature parameter to scale the loss, and
A(i) ≡ B\{i}.

2) Supervised Contrastive Loss: In addition, to effectively
leverage limited IoT vulnerability samples with human anno-
tations, we employ an additional SupCon loss term [35] during
the training process. The the use of label information encour-
ages the feature encoder to closely aligns all samples from
the same class in the latent space to learn more accurate (in
terms of samples with the same label) cluster representations
for vulnerable and benign samples. Formally, the SupCon loss
Lsup

con is written as

Lsup
con = 1

|Bl|
∑

i∈Bl

−1

|Q(i)|
∑

q∈Q(i)

log
exp(H′

i · H′
q/τ)∑

a∈A(i) exp(H′
i · H′

a/τ)
(10)

where Bl corresponds to the used IoT vulnerability dataset,
and Q(i) ≡ {q ∈ A(i) : ỹq = ỹi} is the set of indices
of all other positives that hold the same label. Particularly,
the patched version of the vulnerable code in Bl can serve
as hard negatives to capture more subtle yet discriminative
vulnerability features. 1/|Q(i)| is the positive normalization
factor which serves to remove bias present in multiple positives
samples and preserve the summation over negatives in the
denominator to increase performance.

Finally, the total loss used to train a robust feature encoder
over the batch is defined as

Ltotal = (1 − λ)Lself
con + λLsup

con (11)

where λ is a weight coefficient to balance the two loss terms.

E. Vulnerability Detection

In the detection phase, given a code snippet, we aim to apply
a well-trained detection model (more specifically, a binary
classifier) to identify potential IoT vulnerabilities. Similar to
the feature extraction phase (Section III-C) in model training,
program semantics reflected in the CPG of source code are
first captured through static analysis. Next, each node in

CPG is embedded into low-dimensional vectors through code
embedding. Then, both unstructured node embeddings and
structured relations in CPGs are feed into the well-trained
feature encoder [i.e., the GAT model trained with (11)] for
feature extraction. Finally, the prediction (i.e., vulnerable or
not) is made by a classifier composed of a one-layer fully
connected layer.

F. Vulnerability Explanation

To derive explanations on why the detection model has
decide on the vulnerability, we follow the most related work
IVDetect [14], which aims to find a subgraph G′

k, which
covers the key nodes (tokens/statements) and edges (program
dependencies) that are most decisive to the prediction label,
from the graph representation Gk of the detected vulnerable
code ck via GNNExplainer [19]. The main difference lies
in that we aim to seek both faithful (reflecting the decision
mechanism of the to-be-explained detection model) and stable
(explanation results should be consistent with the same input
for different runs) explanations. Hence, we incorporate a
novel deviation-aware loss term LAlign into GNNExplainer to
identify explanatory CPG subgraphs while preserving their
alignment with original inputs.

Specifically, we first leverage the CPGs {Gk}n
k=1 of other

vulnerable code from the dataset to obtain a global view
of the graph representation {∑v∈V ′

k
hl+1

v,k /|V ′
k|}n

k=1, where hl
v,k

denotes embeddings of node v in graph Gk at layer l, and V ′
k is

a set of selected nodes after graph pooling. Then, a clustering
algorithm is applied to divide the latent representations of
samples in the embedding space into X groups. The represen-
tative graph embeddings are assigned as anchors {hl+1,x}Xx=1
to measure the distance between Gk and G′

k at lth layer for
alignment

LAlign(HGk ,HG′
k
) =

∑
l

∑

v∈V ′
k

∥∥∥sl
v − ŝl

v

∥∥∥
2

2
(12)

where sl
v,x = ||hl+1

v − hl+1,x
v ||2 represents the relative distance

to kth anchor (i.e., the clustering center of each group).
By comparing relative positions, our deviation-aware align-

ment loss LAlign provides a simple yet effective strategy to
encode the varying importance of each dimension for evaluat-
ing alignments in the embedding distribution manifold. Finally,
in order to generate both faithful and stable explanations, we
incorporate the deviation-aware alignment loss term LAlign into
GNNExplainer (3) as

min
G

EG′
k∼GH(Ŷ|G = G′

k) + η · LAlign (13)
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TABLE II
DESCRIPTIVE STATISTICS OF OUR USED DATA SET

where η controls the balance between prediction preservation
and embedding alignment.

As a result, the code snippet corresponding to the extracted
subgraph G′

k is the explanation for the detected vulnerability
sample ck.

IV. EXPERIMENTAL EVALUATION

In this section, we first introduce our research questions,
dataset, baselines, evaluation metrics, and implementation
details. Then, we show results for each research question.

A. Research Questions

In this article, we aim to answer the following research
questions (RQs).

RQ1: How effective is EXVUL in IoT vulnerability detec-
tion as compared to other state-of-the-art approaches?

RQ2: How well does EXVUL perform on explaining the
detection results?

RQ3: How does combinatorial CL contribute to the
performance of EXVUL?

RQ4: How does deviation-aware alignment contribute to
the performance of EXVUL?

RQ5: What is the influence of hyper-parameters on the
performance of EXVUL?

B. Data Set

Given that most DL model-oriented vulnerability
datasets are not tailored for IoT vulnerabilities, following
Mei et al. [36], we adopt a small-scale vulnerability dataset
consisting of 1,471 real-world vulnerable functions crawled
from nine open-source software deployed on IoT devices. For
example, VLCPlayer is a multimedia playback software which
is widely integrated in smart home devices for multimedia file
playing. In addition, we also employ three general software
vulnerability datasets, including ReVeal [13], Devign [12],
and Big-Vul [37], to train baseline models.

Table II reports the statistics of two datasets. Column 1
reports the data source of each dataset. Column 2 lists the

concrete projects selected to collect vulnerability samples.
Columns 3-4 denote the function-level statistics of each
project, including the number of vulnerable functions (Column
3) and non-vulnerable functions (Column 4). The Reveal
dataset [13] is collected by tracking the history vulnerability
fixes in two popular open-source projects: Linux Debian
Kernel and Chromium. In total, ReVeal dataset includes
18 169 functions, in which 9.9% of them are vulnerable (1664
vulnerable functions). The Devign dataset [12] contains a set
of security issue-related commits from Linux Kernel, QEMU,
Wireshark, and FFmpeg projects. It includes 26 037 functions,
in which 45% of them are vulnerable (11 888 vulnerable
functions). The Big-Vul [37] dataset is collected from over
300 C/C++ GitHub projects. It covers approximately 10k vul-
nerable functions and 177k nonvulnerable functions involved
in vulnerability reports from 2002 to 2019. In total, there are
1,471 vulnerable functions along with 59 279 nonvulnerable
ones in IoT software.

C. Baselines

To demonstrate the effectiveness of EXVUL on vulnerabil-
ity detection, we adopt four state-of-the-art DL-based binary
vulnerability detectors:

1) VulDeePecker [4] extracts program slices based on
data-flows between statements and leverages BLSTM
to detect buffer error vulnerabilities (CWE-119) and
resource management error vulnerabilities (CWE-399).

2) SySeVR [5] improves VulDeePecker by performing for-
ward and backward program slicing on PDG to extract
control- and data-flow-related code snippets as features
and adopts several RNN-based models for training.

3) Devign [12] combines multiple code representations
(e.g., AST, CFG) to model programs at the function-
level, and adopts GGNN [38] to learn comprehensive
vulnerability semantics for classification.

4) ReVeal [13] proposes to leverage CPG and GGNN to
automatically learn the graph properties of source code.

Compared to traditional rule-based analysis
tools [8], [9], [10], these approaches have shown promising
results in scalability and effectiveness because they can
automatically learn implicit vulnerability features without any
prior knowledge [39].

To investigate the effectiveness of EXVUL on vulnerability
explanation, we employ three recent GNN-specific explanation
approaches as baselines:

1) GNNExplainer [19] is one of the most popular expla-
nation approaches and has been integrated into the
state-of-the-art vulnerability explainer IVDetect to sim-
plify the detected vulnerable code to a minimal program
dependence subgraph composed of a set of crucial state-
ments along with program dependencies while retaining
the initial model prediction as explanations. Its key
idea lies in accomplishing a maximum MI optimization
task, which leverages edge and feature masks to select
important structures and features.

2) PGExplainer [28] enables simultaneous explanation of
multiple instances, whereas GNNExplainer is developed
for individual graph instance. It trains a parameterized
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mask predictor (so-called explanation network) on a
universal embedding of graph edges to predict edge
masks.

3) GNN-LRP [40] leverages a higher-order Taylor decom-
position of model prediction to decompose the scores
into the importance of different walks. The relevance per
walk is computed using a back-propagation similar to
LRP for each node in the walk. The final output of GNN-
LRP is the set of walks associated with the prediction.

D. Evaluation Metrics

We used the following evaluation metrics to measure the
performance of EXVUL on vulnerability detection.

1) Accuracy (Acc) evaluates the performance that how
many instances can be correctly labeled. It is calculated
as: Acc = (TP + TN)/(TP + FP + TN + FN).

2) Precision (Pre) is the fraction of true vulnerabilities
among the detected ones. It is defined as: Pre =
TP/(TP + FP).

3) Recall (Rec) measures how many vulnerabilities can
be correctly detected. It is calculated as: Rec =
TP/(TP + FN).

4) F1-score (F1) is the harmonic mean of Recall and
Precision, and can be calculated as: F1 = 2 ∗
(Rec ∗ Pre)/(Rec + Pre).

To quantify the quality of generated explanations, we
use three fine-grained vulnerability-triggering paths (VTPs)
metrics [41] to evaluate the faithfulness of explanations,
and the Stability metrics [42] to evaluate the consistency
of explanations, respectively. They are formally defined as
follows.

1) MSP: MSP = (1/N)
∑N

i=1 SPi, where SPi = |Se ∩
Sp|/|Se| represents the proportion of contextual state-
ments truly related to the detected vulnerability sample
i ∈ N in the explanations. Here, Se denotes the set of
explanatory statements provided by explainers, while Sp

denotes the set of labeled vulnerability-contexts (ground
truth) in the dataset. | · | represents the size of a set.

2) MSR: MSR = (1/N)
∑N

i=1 SRi, where SRi = |Se ∩
Sp|/|Sp| denotes that how many contextual statements in
the triggering path of the detected vulnerability sample
i can be covered in explanations.

3) MIoU: MIoU = (1/N)
∑N

i=1 IoUi, where IoUi = |Se ∩
Sp|/|Se ∪ Sp| reflects the degree of overlap between the
explanatory statements and the contextual statements on
the VTP.

4) Stability (Stb): Stbi = (1/C2
M)

∑C2
M

j=1 IoUj, where IoUj =
|Sm∩Sn|/|Sm∪Sn| reflects the degree of overlap between
sample i’s explanatory statements in the run m and n ∈
[1, M]. C2

M is the combination operation, i.e., the total
combinations when comparing the results of any two
runs. We calculated the arithmetic mean for evaluation
in our experiments.

E. Implementation Details

Our experiments were performed on a computer with an
Nvidia Graphics Tesla T4 GPU, installed with Ubuntu 18.04,
CUDA 10.1. We implemented our approach in Python using
PyTorch.2 We generated CPGs and SE variants of the code
snippets based on the ASTs parsed by tree-sitter.3 The
dimension of the vector representation of each node/token
in CPG is set to 128 and the dropout is set to 0.1. The
other hyper-parameters of our approach are tuned through grid
search. For model training, we employed CodeSearchNet [43],
a large-scale unlabeled code corpus which contains 2.1M
bimodal comment-function pairs and 6.4M unimodal functions
across six programming languages, to perform self-supervised
CL, and conducted supervised CL on our IoT vulnerability
dataset, in which vulnerable samples are regarded as positives,
and patches (benign/nonvulnerable samples) are negatives (the
patched version of the anchor sample is hard negative).

F. RQ1: Effectiveness on Vulnerability Detection

Objective: Benefiting from the powerful representation
capability of deep NNs, many DL-based vulnerability detec-
tion approaches have been proposed. However, as manually
constructing such a large-scale dataset with human annota-
tions for IoT vulnerabilities is nontrivial and time-consuming,
it’s unrealistic to train a well-performing IoT vulnerabil-
ity detection model. In this article, we propose a novel
approach EXVUL, which combines the strengths of large-scale
unlabeled code corpus and limited labeled data to train an
effective IoT vulnerability detection model. The experiments
are conducted to investigate whether EXVUL outperforms
state-of-the-art DL-based approaches, which are pretrained on
general software vulnerability dataset, on the IoT vulnerability
detection task.

Experimental Design: We considered four state-of-the-art
baselines: VulDeePecker, SySeVR, Devign, and ReVeal. As
mentioned earlier, since the above four DL-based binary
vulnerability detectors are not designed for IoT vulnerabilities,
we, respectively, trained them based on three general software
vulnerability datasets (randomly split into the ratio of 8:2 for
training and validation), and applied transfer learning to fine-
tune these pretrained models on part of our IoT vulnerability
samples to port it for IoT vulnerability detection. For EXVUL,
80% of IoT code samples are treated as training data in super-
vised CL, 10% of samples are treated as validation data (also
used for fine-tuning pretrained baseline models), and the left
10% of samples are treated as testing data. We also keep the
distribution as same as the original ones in training, validating,
and testing data. Besides, in order to comprehensively compare
the performance among baselines and EXVUL, we considered
four widely-used binary classification metrics (i.e., Accuracy,
Precision, Recall, and F1-score) and conducted experiments
on the IoT dataset.

Results: Fig. 7 shows the performance comparison of
EXVUL with respect to four state-of-the-art DL-based

2https://pytorch.org/
3https://tree-sitter.github.io/tree-sitter/
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(a)

(b)

(c)

Fig. 7. Performance of IoT vulnerability detection regarding EXVUL

and baselines. (a) Comparison with baselines pretrained on the Devign
dataset. (b) Comparison with baselines pretrained on the ReVeal dataset.
(c) Comparison with baselines pretrained on the Big-Vul dataset.

approaches (pretrained on three datasets) in terms of the
aforementioned evaluation metrics. Overall, EXVUL generally
outperforms all of the baselines, achieving 0.89 on Accuracy,
0.64 on Precision, 0.69 on Recall, and 0.67 on F1.

In particular, we find that the average improvements of
EXVUL over each metric are significant, ranging from
33.44% to 72.91% on Accuracy, from 28.29% to 63.12%
on Precision, from 10.09% to 137.06% on Recall, and from
19.52% to 98.78% on F1, respectively. These results verify the
effectiveness of our combinatorial CL strategy in detecting IoT
vulnerabilities without sufficient labeled data for model train-
ing. The root cause for this performance gap is that directly
migrating a DL model pretrained on a general vulnerability
dataset to IoT vulnerability detection via transfer learning
ignores the distribution disparity between the source domain
(i.e., general vulnerabilities) and target (IoT vulnerabilities) in
feature space, confusing the classifier seriously. By contrast,
benefiting from the combination of large-scale unlabeled code
corpus and limited labeled vulnerability data, EXVUL learns
to capture discriminative semantic features of source code and
leverages these features to distinguish vulnerable code from
benign ones.

Answer to RQ1: EXVUL outperforms the state-of-the-
art baselines on IoT vulnerability detection. Particularly,
it achieves overwhelming results at both Accuracy and
F1-score, which indicate that EXVUL equipped with self-
supervised CL as well as supervised CL has a stronger
ability to learn the semantics of IoT vulnerabilities.

G. RQ2: Explainability on Vulnerability Detection

Objective: Though many novel approaches have been
proposed and indeed achieved remarkable performance, they
fall short in the capability to explain why a given code is
predicted as vulnerable. The form of an explanation can be
diverse, such as vulnerability types [44], root cause [45],
similar vulnerability reports [46], and so on. In this article,
we follow the related work IVDetect to formalize the vulner-
ability explanation as a fine-grained classification task, i.e.,
locating vulnerability-related code snippets. The experiments
are conducted to investigate whether EXVUL outperforms
state-of-the-art vulnerability explanation approaches in terms
of faithfulness and stability.

Experimental Design: We considered the three state-of-
the-art baselines: IVDetect, P2IM, and mVulPreter. To gain
the ground truths of the vulnerability samples in the testing
set, we adopted a simple yet effective labeling strategy [47],
i.e., comparing changed statements between each vulnerable
function and its corresponding fixed version in the corre-
sponding vulnerable function according to diff files. If a
statement was deleted or altered (i.e., starting with “-” in diff
files), it would be labeled as vulnerable, and nonvulnerable
otherwise. In order to avoid introducing artificial deviation,
two postgraduates and one Ph.D participated in this labeling
process. If two postgraduates disagreed on the label of the
same sample, the sample would be forwarded to the Ph.D
evaluator for further investigation. In order to comprehensively
compare the performance among baselines and EXVUL, we
considered three faithfulness-specific metrics (i.e., MSP, MSR,
and MIoU). We reported results averaged across 100 IoT
vulnerabilities, which were randomly sampled from our IoT
dataset (independent from samples used for training EXVUL),
correctly detected by baselines and EXVUL. Due to the
randomness in initialization, the explanation for the same
instance given by an explainer could be different for different
runs. Thus, in addition to comparing to ground truths, we
also evaluate the obtained explanations in terms of stability.
For the same vulnerability sample, we ran each explainer five
times and reported the average values of the stability metric.
A higher stability score indicates more consistent explanations
at different runs.

Results: Table III shows the performance comparison of
our approach with respect to state-of-the-art vulnerability
explainers. As can be seen, EXVUL substantially outperforms
the best-performing approach PGExplainer by 22.97% in MSP,
49.55% in MSR, and 48.40% in MIoU, respectively. The
main reasons leading to this result are two folds. On the one
hand, Owing to our combinatorial CL, potential vulnerable
behavior of programs are captured by EXVUL, leading to
more reliable prediction labels (as discussed in RQ1) for
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TABLE III
EVALUATION RESULTS ON VULNERABILITY EXPLANATION IN

PERCENTAGE COMPARED WITH BASELINES

explanation generation. On the other hand, by incorporating
our deviation-aware strategy into GNNExplainer, EXVUL

can help to identify more important substructures used for
predictions, hence yielding the best explanation performances
on all metrics (especially MSR).

The consistency of the explanations generated by each
explanation approach is also shown in Table III. Unfortunately,
the stability scores of all explanation approaches are below
20%. Among them, the consistency of the best-performing
explainer PGExplainer is only 16.22%, indicating that for
the same input, the explanations generated by each explainer
vary greatly at different runs and fail to meet the requirement
of trustworthiness. The above results show that the existing
explanation approaches suffer from significant variability in
the explanation of the same vulnerability. By contrast, we
can find that our approach significantly outperforms the state-
of-the-art explainers from 119.73% to 341.64% in terms of
stability, demonstrating the introduction of our deviation-aware
alignment strategy can significantly improve the consistency.

Answer to RQ2: The faithfulness and consistency of exist-
ing explanation approaches are not satisfactory, making it
difficult for security analysts to establish trust on the model
decision. By contrast, our proposed EXVUL significantly
outperforms the state-of-the-art explainers in terms of MSP,
MSR, MIoU, and Stb, demonstrating the practical value of
our approach in providing faithful and stable explanations.

H. RQ3: Impacts of Combinatorial Contrastive Learning

Objective: Different from traditional supervised learning-
based vulnerability detection framework, which trains a
well-performing model on the large-scale labeled dataset, we
propose a new combinatorial CL-based training strategy to
combine the strengths of large-scale unlabeled code corpus
and limited IoT vulnerability dataset. Therefore, it is important
to conduct a study on how the combinatorial CL affect the
learning of IoT vulnerability semantics.

Experimental Design: We compared the performance of
four versions of EXVUL: with only self-supervised CL
(denoted as EXVULself), with only supervised CL (denoted
as EXVULsup), without CL (equivalent to tradition supervised
learning with cross-entropy, and denoted as EXVULCE, and
with combinatorial CL (the default EXVUL). The experimen-
tal dataset is set the same as the experiment of RQ1 (i. e.,
80% for training, 10% for validation, and 10% for testing). We

TABLE IV
EVALUATION RESULTS ON VULNERABILITY DETECTION IN

PERCENTAGE COMPARED WITH VARIANTS

also consider the four performance measures(i. e., Accuracy,
Precision, Recall, and F1-score) for comprehensively studying
the impact of different training strategies.

Results: As shown in Table IV, compared with EXVULself
and EXVULsup, EXVUL improves the Accuracy by 8.53% and
18.67%, respectively, and improves the F1-score by 28.85%
and 13.56%, respectively. The reason for the improvements is
that, benefiting from the combination of large-scale unlabeled
code corpus and limited labeled vulnerability data, EXVUL

learns to capture discriminative semantic features of source
code and leverages these features to distinguish vulnerable
code from benign ones. In addition, we can find that both
EXVULself and EXVULsup outperform EXVULCE in terms
of all metrics. The potential cause for this performance gap
may be that suffering from the severe imbalanced sample
distribution (only 2.48% samples in our IoT dataset are vulner-
able), the classifier fails to identify vulnerable samples from
plenty of nonvulnerable samples. Furthermore, EXVULsup
slightly outperforms EXVULself by 29.79% in terms of Recall.
The results indicate that by performing supervised CL on
the labeled vulnerability dataset at the same time as model
training, the detection model can effectively capture the
vulnerability semantics for classification.

Answer to RQ3: Self-supervised and supervised CL present
their own advantages in learning program semantics, and
combining them together can produce the best improve-
ments on IoT vulnerability detection.

I. RQ4: Impacts of Deviation-Aware Alignment

Objective: As mentioned in RQ2, the reason why existing
explanation approaches are unreliable is that, due to the
randomness in initialization of the explainer, the explanation
for the same instance given by an explainer could be different
for different runs, which violates the stability of explanations.
Therefore, we want to conduct a deeper experiment on how
our proposed deviation-aware alignment strategy impacts the
performance of EXVUL on vulnerability explanation.

Experimental Design: Similar to RQ2, we still adopted
three aforementioned GNN-based explanation approaches
(GNNExplainer, PGExplainer, and Graph-LRP) as baselines.
For each approach, we created a variant by incorporate our
deviation-aware alignment loss term into its optimization [as
we did in (13)]. We empirically ran each approach ten times on
100 sampled IoT vulnerabilities used in RQ2, and calculated
the Stb metric after each run. Although the value of Stb may
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Fig. 8. Varying performance of each approach (with and without our
deviation-aware alignment strategy) in terms of Stability.

benefit from more runs or randomness of graph sampling,
comparison between different execution rounds is beyond the
scope of this research and we leave that for future research.

Results: The evaluation results of each approach (with and
without our deviation-aware alignment strategy) are illustrated
in Fig. 8. According to the results, we find that it can be
seen that the overall stability increases slowly with increasing
runs. It is reasonable since the more rounds the explainer
runs, the more likely the explanations will overlap. In addi-
tion, the stability of all explanation approaches go up with
the incorporation with our deviation-aware alignment, which
validates effectiveness of our proposal in obtaining consistent
explanations.

Answer to RQ4: The overall stability increases slowly with
increasing runs. With the incorporation with our deviation-
aware alignment, the stability of each approach can be
significantly improved.

J. RQ5: Influences of Hyper-Parameters on EXVUL

Objective: In our approach, two key hyper-parameters λ

and η affects the effectiveness of vulnerability detection and
explanation, respectively. The former balances the weights
between feature representations learned in self-supervised
and supervised manner, the latter makes a tradeoff between
faithfulness and stability of generated explanations. Therefore,
we vary the hyper-parameters λ and η to explore EXVUL‘s
sensitivity toward both two values.

Experimental Design: To keep simplicity, all other config-
urations were kept consistent with RQ1 and RQ2, including
data split and metric computation. λ was varied from 0 to 1
with an internal of 0.1, while η was varied at scale [1e-3, 1e-2,
1e-1, 1, 10, 1e2, 1e3].

Results: The evaluation results are shown in Fig. 9. In
particular, for vulnerability detection, we can observe from
Fig. 9(a) that, different weights of self-supervised and super-
vised loss in our combinatorial CL has varying impart on
EXVUL‘s performance. all the metrics of EXVUL go up with
the increasing of the weight of SupCon part, and reach the
optimal performance (except Precision) when λ equals 0.6.
After that, each metric drop to different degrees. The results

(a) (b)

Fig. 9. Sensitivity of EXVUL toward different hyper-parameters.
(a) Detection performance under different weights of supervised loss.
(b) Explanation performance under different weights of alignment loss.

indicate that the use of (partial) labeled samples is benefit to
the performance of IoT vulnerability detection.

In addition, for vulnerability explanation, we can find from
Fig. 9(b) that, higher weights of embedding alignment loss
bring a noticeable improvement in MSP, MSR, and MIoU,
which shows that our deviation-aware alignment strategy is
helpful for generating both faithful and stable explanations.
However, we also observe that blindly increasing the weight
(larger than 10) is not always beneficial, and even result in a
performance drop (e.g., MSP and MIoU).

Answer to RQ5: Different settings of hyper-parameters can
influence the performance of EXVUL in vulnerability detec-
tion. Our default hyper-parameter settings achieve optimal
results.

V. THREATS AND LIMITATIONS

The first threat to validity comes from the application
scenario of our approach. Since our approach is designed
for code-centric vulnerability detection and evaluated on
a C/C++ dataset, it cannot be used to detected vulner-
abilities in IoT applications with only binaries or written
in other programming languages. However, benefiting from
the language-agnostic nature of CPG, EXVUL can be eas-
ily extended to these scenarios. In addition, different from
dynamic approaches (e.g., Fuzzing [48], [49]) which are able
to detect vulnerabilities in real-time, our approach is stat-
ically constructed (i.e., off-line training) and work during
code review phase (i.e., on-line detection). Thus, dynamic
approaches can serve as a supplement to our approach to
construct a more effective detection system throughout the
application’s life cycle.

The second threat to validity is the computational effi-
ciency of our proposed approach. We employed CPG as a
model-understandable intermediate representation to extract
vulnerability features at the function-level. Given that the
function in a real-world project is commonly large (maybe
over 100 lines), graph construction is more complex and time-
consuming compared to other code representations such as
sequence and syntax tree. In the future, we try to explore
a more effective and simpler code representation to further
improve our approach.
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VI. RELATED WORK

A. DL-Based Vulnerability Detection

The major breakthroughs in DL models along with the ever-
increasing public datasets has opened up new opportunities to
develop effective vulnerability detection techniques without
the need of hand-crafted vulnerability patterns/rules. Prior
works focus on representing source code as sequences and
use LSTM-like models to learn the syntactic and semantic
information of vulnerabilities [4], [5]. Li et al. [4] proposed
VulDeePecker, a slice-level vulnerability detection approach
which represents source code as sequences and uses RNN
(e.g., LSTM and BGRU) to learn the syntactic and semantic
information of vulnerabilities. Recently, a large number of
works [11], [12], [13], [50] turn to leveraging GNNs to extract
rich and well-defined semantics of the program structure from
graph representations for downstream vulnerability detection
tasks. For example, Zhou et al. [12] proposed Devign, which
combines multiple code representations to model vulnerability
features and adopts GGNN to learn rich code semantics
from structured graph representations, to detect vulnerable
functions.

Despite their effectiveness, the function-level or slice-level
detection results are still coarse-grained. To alleviate heavy
manual review, MVD [47], [51] and LineVD [52] formalizes
vulnerability detection as a fine-grained graph node classifica-
tion problem to identify suspicious vulnerable statements.

In contrast to these studies constructing an effective detec-
tion model based on large-scale vulnerability data with human
annotations, we explore the potential of training a well-
performing DL model with limited labeled data for IoT
vulnerability detection.

B. Explainability on DL-Based Vulnerability Detection

While DL-based code models are remarkably effective in
a variety of tasks, one growing concern about their adoption
is explainability. The requirement for explainability is more
urgent in vulnerability detection because it is hard to establish
trust on the system decision from simple binary (vulnerable
or benign) results without credible evidence. IVDetect [14]
built an additional model based on binary detection results
to derive crucial statements that are most relevant to the
detected vulnerability as explanations. LineVul [53] lever-
aged the self-attention mechanism inside the Transformer
architecture to locate vulnerable statements for explanation.
Chakraborty et al. [13] computed the contribution of each code
token toward the prediction. mVulPreter [54] combined the
attention weight with the vulnerability probability outputted
by the multigranularity detector to compute the importance
score for each code slice. In addition, a few efforts simplified
the instance to be explained to a minimal set of statements
that still preserves the initial model prediction. For example,
P2IM [55] borrows Delta Debugging [56] to reduce a program
sample to a minimal snippet which a model needs to arrive at
and stick to its original vulnerable prediction to uncover the
model’s detection logic.

The main difference between our approach and the
above vulnerability explanation approaches is that existing

approaches focus only on how to improve the explainability
of DL-based vulnerability detection models, ignoring special
concerns in security domains. By contrast, EXVUL proposes
a deviation-aware strategy, which aligns the original code
graph with its explanatory substructure in the latent space, and
incorporates it into existing explanation framework to obtain
more faithful and stable explanations.

VII. CONCLUSION AND FUTURE WORK

In this article, we propose EXVUL, a novel DL-based
approach for effective and explainable IoT vulnerability
classification. The key insight of EXVUL is that combining
the strengths of large-scale unlabeled code corpus and limited
labeled data can facilitate training an effective IoT vulnerability
detection model, and both faithful and stable explanations can
help security practitioners understand the detected vulnerabili-
ties. The experimental results show that EXVUL significantly
outperforms the state-of-the-art baselines in terms of all metrics.
In the near future, we plan to automatically construct a large-
scale IoT vulnerability dataset to explore the generalizability
of our approach. In addition, we aim to work with our industry
partners to deploy EXVUL in their proprietary security systems
to test its effectiveness in practice.
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