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Abstract—As with anything connected to the internet, Internet
of Things (IoT) devices are also subject to severe cybersecurity
threats because an adversary could exploit vulnerabilities in
their internal software to perform malicious attacks. Despite
the promising results of Deep Learning (DL)-based approaches,
the lack of well-labeled IoT vulnerability samples available for
training and explainability pose a critical challenge to deploy
them in practice.

In this paper, we propose EXVUL, a novel DL-based approach
for Effective and eXplainable IoT VULnerability detection.
Specifically, inspired by recent advances of self-supervised learn-
ing in label-expensive tasks, we propose a new combinatorial
contrastive loss to combine the strengths of large-scale unlabeled
code corpus and limited IoT vulnerability samples. Then, given
a binary detection result, EXVUL provides a set of faithful
and stable code statements positively contributing to the model’s
predictions as understandable explanations. Experimental results
indicate that EXVUL outperforms state-of-the-art baselines by
33.44%-72.91% and 19.52%-98.78% with respect to the accuracy
and F1 score metrics, respectively. For vulnerability explanation,
EXVUL improves over the best-performing baseline explainer
PGExplainer by 22.97% in MSP, 49.55% in MSR, and 48.40% in
MIoU, demonstrating that the explanations provided by EXVUL
can correctly point out the vulnerable statements relevant to the
detected vulnerabilities.

Index Terms—Internet of Things (IoT), explainability, con-
trastive learning, stability
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I. INTRODUCTION

THE Internet of Things (IoT) landscape and its smart
devices are spreading in all aspects of our society, such

as autonomous vehicles and smart grids, improving service
delivery and increasing productivity. As reported in [1], the
global number of connected IoT devices is expected to grow
by 16%, to 16.7 billion active endpoints by 2023. In the
meanwhile, as with anything connected to the internet, IoT
devices are also subject to security threats, leading to severe
economic loss and equipment damage. One of the most
common IoT security threats is software vulnerabilities [2],
which arise from bugs in code as well as from insecure system
settings that can be exploited by threat actors for a variety of
malicious ends.

Benefiting from the great success of Deep Learning (DL)
on IoT security [3], an increasing number of learning-based
vulnerability detection approaches [4], [5], [6], [7] have been
proposed. Compared to conventional approaches [8], [9], [10]
that heavily rely on hand-crafted vulnerability specifications,
DL-based approaches focus on constructing complex Neural
Network (NN) models to automatically learn implicit vulner-
ability patterns from source code without human interven-
tion. Recently, inspired by the ability to effectively capture
structured semantic information (e.g., control- and data-flows)
of source code, Graph Neural Networks (GNNs) have been
widely adopted by state-of-the-art neural vulnerability detec-
tors [11], [12], [13], [14].

While demonstrated superior performance, these approaches
face two challenges that limit their potential when applied to
detecting vulnerabilities on IoT devices:

• Insufficient Labeled Dataset. Almost all DL-based vulner-
ability detection approaches follow the supervised learning
paradigm, i.e., training a best-performing detection model
over a well-labeled vulnerability datasets. However, collect-
ing such a large-scale dataset with human annotations for
software vulnerabilities in practice is time-consuming and
error-prone, let alone for IoT vulnerabilities. For example,
one of the most popular benchmarks, FFmpeg+QEMU [12],
which contains +22K functions with 45.66% of the vulnera-
ble ones, was manually labeled by four professional security
researchers for 600 man-hours. What’s worse, as reported in
a recent work [15], existing vulnerability datasets are prone
to varying degrees of quality issues such as noisy labels and
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1  void bn_sqr_normal(BN_ULONG *r, const BN_ULONG *a, 
                      int n, BN_ULONG *tmp)
2  {
3     int i, j, max;
4     const BN_ULONG *ap;
5     BN_ULONG *rp;
6     ap = a;
7     rp = r;
8     rp[0] = rp[max - 1] = 0;
9     rp++;
10    j = n;
11    if (--j > 0) {
12        ap++;
13        rp[j] = bn_mul_words(rp, ap, j, ap[-1]);
14        rp += 2;
15    }
16 }

File: openssl/crypto/asn1/asn1_lib.c

Commit: https://github.com/openssl/openssl/blob/9b10986d7742a5105ac8c5f4eba8b103caf57ae9/

Vulnerability Type: Buffer Overrun
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1   static ssize_t qrtr_tun_write_iter(struct kiocb *iocb, 
                                       struct iov_iter *from)
2   {
3      kbuf = kzalloc(len, GFP_KERNEL);
4      if (!kbuf)
5             return -ENOMEM;
6      if (!copy_from_iter_full(kbuf, len, from))
7              return -EFAULT;
8      ret = qrtr_endpoint_post(&tun->ep, kbuf, len);
9      return ret < 0 ? ret : len;
10  }

File: net/qrtr/tun.c

Commit: https://github.com/torvalds/linux/commit/a21b7f0cff1906a93a0130b74713b15a0b36481d
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Fig. 1. Explanation results (i.e., vulnerability-related contexts highlighted
by “1”) achieved by a leading vulnerability explainer IVDetect on the same
vulnerable code in Linux Kernel.

duplication, which may seriously degrade the reliability of
detection models.

• Lack of Explainability. Due to the black-box nature of NN
models, GNN-based approaches fall short in the capability
to explain why a given code is predicted as vulnerable
[13], [16]. Such a lack of explainability could hinder their
adoption when applied to real-world usage as substitutes
for traditional security analyzers [17]. To reveal the decision
logic behind the binary detection results (vulnerable or not),
several approaches have been proposed to provide additional
explanatory information [18]. For example, IVDetect [14]
leverages a model-agnostic explanation approach, named
GNNExplainer [19], to simplify the detected vulnerable
code to a minimal program dependence sub-graph con-
sisting of a set of crucial statements along with program
dependencies while retaining the initial model prediction as
explanations. Unfortunately, due to the complexity of code
structures and the diversity of candidate program subsets,
existing instance-based explanation approaches may break
the criteria of stability, i.e., such extracted explanations may
not be consistent with the same input for different runs. A
failure case is shown in Fig. 1, a memory leak vulnerability
occurs when the allocated buf (at line 3) is not released in
case of error or success return, allowing attackers to cause
a denial of service1. In the first run, IVDetect identifies
statements at line 3, 4, 7, 9 as vulnerable, while in the
second run, it turns to pinpoint statements at line 4, 5, 6, 8 as
explanations. As a result, explanations provided by existing
approaches fail to faithfully reflect the decision mechanism
of the detection model, making the security practitioners
quite confused and not trust the explanation results.

To tackle the above two challenges, we propose a novel DL-
based approach, named EXVUL, for Effective and eXplainable
IoT VULnerability detection. The key insights underlying our
approach include (❶) combining the strengths of large-scale
unlabeled code corpus and limited labeled data to train an
effective IoT vulnerability detection model, as well as (❷)
providing both faithful (reflecting the decision mechanism of
the to-be-explained detection model) and stable (explanation
results are consistent with the same input for different runs)
explanations. Specifically, to solve the first issue, EXVUL
adopts a novel combinatorial contrastive learning paradigm
to facilitate learning better code representations in a self-

1https://nvd.nist.gov/vuln/detail/CVE-2019-19079

supervised manner for the downstream detection task, while
making use of limited label information to distinguish IoT
vulnerable code from benign ones. To address the second
issue, we propose a deviation-aware strategy, which aligns
the feature embedding of the input code snippet with its
explanatory candidate set in the latent space to improve
inconsistency, and incorporate it into GNNExplainer to obtain
more faithful and stable explanations.

To evaluate the effectiveness of our proposed EXVUL, we
conduct experiments on a real-world IoT vulnerability dataset
composed of 1,471 IoT vulnerable functions. The experimental
results show that EXVUL significantly outperforms the state-
of-the-art baselines from 33.44% to 72.91% in terms of Accu-
racy, and from 19.52% to 98.78% in terms of F1, indicating
the effectiveness of EXVUL in IoT vulnerability detection.
Besides, EXVUL improves over the best-performing baseline
explainer PGExplainer by 22.97% in MSP, 49.55% in MSR,
and 48.40% in MIoU, demonstrating that the explanations
provided by EXVUL can correctly point out the vulnerable
statements relevant to the detected vulnerabilities. Finally, this
paper makes the following contributions:
• We propose a research problem that the lack of labeled

data and explainability pose a critical challenge to migrate
existing DL-based approaches to IoT vulnerability detection
and need to be treated together.

• We propose EXVUL, a novel DL-based approach for effec-
tive and explainable IoT vulnerability detection. EXVUL
adopts a combinatorial contrastive learning paradigm to
train a well-performing detection model over limited IoT
vulnerability samples, and incorporates a novel deviation-
aware alignment strategy into the state-of-the-art explana-
tion approach GNNExplainer to provide both faithful and
stable explanations.

• Extensive experimental results and user study show sub-
stantial improvements EXVUL brings to IoT vulnerability
detection and explainability.
The rest of this paper is organized as follows. Section II

introduces the background knowledge related to our problem.
Section III describes the details of our approach. Section
IV presents the experimental setup and results. Section V
discusses the possible threats to validity. Section VI reviews
the related work. Finally, Section VII concludes the paper and
outlines our future research agenda.

II. BACKGROUND

In this section, we briefly introduce the general pipeline
of DL-based vulnerability detection and explanation. Then,
we discuss related techniques used in our approach, including
contrastive learning and GNN-specific explanation framework.

A. Problem Definition

Following [14], [20], Explainable Vulnerability Detection
(EVD) is generally expanded from a well-trained binary clas-
sifier by appending a post-hoc explainer, and the “classification
with explanation” workflow for an individual instance can
be illustrated as Fig. 2. The definitions of EVD and its two
components (the detector and explainer) are formalized as:
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1  void bn_sqr_normal(BN_ULONG *r, const BN_ULONG *a, 
                      int n, BN_ULONG *tmp)
2  {
3     int i, j, max;
4     const BN_ULONG *ap;
5     BN_ULONG *rp;
6     ap = a;
7     rp = r;
8     rp[0] = rp[max - 1] = 0;
9     rp++;
10    j = n;
11    if (--j > 0) {
12        ap++;
13        rp[j] = bn_mul_words(rp, ap, j, ap[-1]);
14        rp += 2;
15    }
16 }

File: openssl/crypto/asn1/asn1_lib.c

Commit: https://github.com/openssl/openssl/blob/9b10986d7742a5105ac8c5f4eba8b103caf57ae9/
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1  void bn_sqr_normal(BN_ULONG *r, const BN_ULONG *a, 
                      int n, BN_ULONG *tmp)
2  {
3     int i, j, max;
4     const BN_ULONG *ap;
5     BN_ULONG *rp;
6     ap = a;
7     rp = r;
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11    if (--j > 0) {
12        ap++;
13        rp[j] = bn_mul_words(rp, ap, j, ap[-1]);
14        rp += 2;
15    }
16 }
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1   static ssize_t qrtr_tun_write_iter(struct kiocb *iocb, 
                                       struct iov_iter *from)
2   {
3      kbuf = kzalloc(len, GFP_KERNEL);
4      if (!kbuf)
5             return -ENOMEM;
6      if (!copy_from_iter_full(kbuf, len, from))
7              return -EFAULT;
8      ret = qrtr_endpoint_post(&tun->ep, kbuf, len);
9      return ret < 0 ? ret : len;
10  }

File: net/qrtr/tun.c

Commit: https://github.com/torvalds/linux/commit/a21b7f0cff1906a93a0130b74713b15a0b36481d
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Fig. 3. Self-supervised contrastive learning pipeline.

DEFINITION 1 (EVD). Given a code snippet C, EVD first
performs feature engineering to embed it into a feature repre-
sentation H, and then generates two outputs respectively from
its detector and explainer: a predicted label Y ∈ {0, 1} with 1
for vulnerable and 0 otherwise, and an explanation E indicating
why the sample is predicted as vulnerable.

DEFINITION 2 (DETECTOR). The detection pipeline can be
further decoupled into two components, a feature encoder and
a classifier. It is defined as Y = g(f(H)), where the feature
encoder f(·) learns to capture vulnerability-related features
from H, and the classifier g(·) assigns it a binary label Y .

DEFINITION 3 (EXPLAINER). Given a code snippet C
detected as vulnerable, i.e., Y = 1, the explanation E is
a set of important features H′ ∈ H positively (or above a
certain threshold) contributing to the model’s prediction. These
important features imply the risky behaviors of the vulnerable
code.

B. Contrastive Learning

Given that the limited labeled data in downstream tasks,
Contrastive Learning (CL), a popular self-supervised learning
paradigm, has emerged as a promising approach in Computer
Vision (CV) [21] and Natural Language Processing (NLP) [22]
for learning better feature representations without supervision
from labels [23]. The goal of CL is to maximize the agreement
between original sample and its positive (i.e., similar) variant

2024/2/28 16:03 mvd.svg
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u

v
1-hop

𝒩(𝜈)

Fig. 4. Neighborhood aggregation scheme in GNNs.

while minimizing the agreement between original sample and
a negative (i.e., dissimilar) sample. Positive sample x+ is a
Semantically Equivalent (SE) variant derived from the anchor
x by applying built-in pretext tasks (also known as data
augmentation), while negative sample x− is the other sample
different from x. The general pipeline of CL is shown in Fig.
3. The positive sample x+ of an image x is constructed by
data augmentation such as rotation and cropping. Then, x+

and x will be fed into the feature encoder with other images
x− (labeled as negatives) to produce better embeddings via
minimizing the contrastive loss function.

C. GNN-specific Explanation Framework

Due to the outstanding representation learning ability for
structured graph data, Graph Neural Networks (GNNs) [24]
have been applied to a variety of research domains such as
natural science [25], knowledge graphs [26], and blockchain
[27]. As shown in Fig. 4, modern GNNs mostly follow a
neighborhood aggregation scheme, where the node feature is
updated by iteratively aggregating message from its κ-hop
neighbors, to capture the semantic features from the graph
structure. This procedure can be formulated by:

h(t)
v = σ

(
h(t−1)
v , AGG(t)

({
h(t−1)
u : u ∈ N (v)

}))
(1)

where h(t)
v is the feature representation of node v ∈ V at the

t-th iteration, u ∈ N (v) is the neighbors of v, and AGG(·)
and σ(·) denote aggregation (e.g., MEAN ) and activation
(e.g., ReLU ) functions for node feature computation. After
iterating T time steps, the final node representation matrix
H

(T )
k = {h(T )

v }Vv=1 of graph Gk is used for downstream tasks.
Despite their effectiveness, the lack of explainability creates

key barriers to the adoption of GNNs in practice. Recently,
several studies [19], [28] have attempted to explain the de-
cisions of GNNs by applying a perturbation-based strategy,
a representative effort is GNNExplainer [19]. Typically, it
formulates the problem by maximizing the Mutual Informa-
tion (MI), which quantifies the consistency between original
predictions and prediction of candidate explanation, between
the minimal explanatory sub-structure G′

k of the k-th graph Gk

and its predicted label Ŷ:

max
G′
k

MI(Ŷ,G′
k) = H(Ŷ)−H(Ŷ|G = G′

k) (2)
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where H(Ŷ) is the entropy term and H(Ŷ|G = G′
k) is the

conditional entropy term.
For optimization, GNNExplainer treats the sub-graph G′

k

as a random graph variable G and leverages edge mask to
find a sub-graph that can best predict the original output Ŷ as
follows:

min
G

EG′
k∼GH(Ŷ|G = G′

k) (3)

After optimization, the sub-graph G′
k is the generated ex-

planations for the prediction of the input graph Gk.

III. OUR APPROACH: EXVUL

In this section, we present the details of our novel approach
named EXVUL, which integrates accurate binary results and
understandable explanations for effective and explainable IoT
vulnerability detection.

A. Overview

Fig. 5 shows the overall architecture of our proposed
EXVUL approach, which consists of three main phases: model
training, vulnerability detection, and vulnerability explanation.

The model training phase includes three steps. In Step
1 (Section III-B), EXVUL conducts multiple semantically-
preserving transformation on unlabeled code corpus to con-
struct equivalent variants and arranges them into a mini-
batch for self-supervised contrastive learning. The labeled
dataset (including vulnerable code and their corresponding
patched version) is fed into another mini-batch for supervised
contrastive learning. Then, in Step 2 (Section III-C), both
unlabeled and labeled samples are embedded into numerical
graph representations through graph construction and code
embedding, and then fed into an attention-based GNN to
extract representative features. Finally, in Step 3 (Section
III-D), a well-performing IoT vulnerability detection model
is produced by performing our novel combinatorial contrastive
learning over the representations of both unlabeled and labeled
code samples in the latent feature space.

In the vulnerability detection phase (Section III-E), EXVUL
first splits the target program into functions and repeats feature
extraction (Step 2) to obtain corresponding vector represen-
tations. Then, for each code snippet, both unstructured node
embeddings and structured relations are feed into the well-
trained detection model for classification.

In the vulnerability explanation phase (Section III-F),
EXVUL incorporates a novel deviation-aware alignment strat-
egy into the state-of-the-art explanation approach GNNEx-
plainer to provide both faithful and stable explanations.

B. Data Augmentation

In order to construct positive variants of unlabeled programs
for self-supervised contrastive learning, we first perform static
analysis to parse each source code into an Abstract Syntax
Tree (AST) and traverse it to search for potential injection
locations. Following [29], once an injection location is found,
an applicable augmentation operator Φ ∈ {ϕ1, ϕ2, · · · , ϕ6}
(shown in Table I) will be randomly selected and applied to get

TABLE I
SEMANTIC-PRESERVING TRANSFORMATIONS WE ADOPTED FOR DATA

AUGMENTATION

No. Name Description
1 Identifier

Renaming
Substitute the function/variable name
with a random token.

2 Operand
Swap

Swap the operands of binary logical op-
erations.

3 Statement
Permutation

Swap two lines of statements that have
no dependency.

4 Loop
Exchange

Replace for loops with while loops or
vice versa.

5 Block Swap Swap then block of a chosen if state-
ment with its corresponding else block.

6 Switch to If Replace a switch statement with its
equivalent if statement.

the transformed node. We then adapt the context accordingly,
and translate it to the positive variants. Subsequently, we ar-
range original code samples along with their SE variants (i.e.,
positives) as inputs in a mini-batch. In this way, augmented
samples originated from one pair are negatively correlated
to any sample from other pairs within a mini-batch during
self-supervised contrastive learning. For supervised contrastive
learning, we directly regard samples with the same label as
positives and the others as negatives.

C. Feature Extraction

After data augmentation, both unlabeled original-variant
sample pairs and labeled vulnerability dataset should be con-
verted into feature embeddings acceptable for DL models.
In particular, feature extraction includes three main steps,
including graph construction, code embedding, and graph
representation learning.

1) Graph Construction: To model the discriminative fea-
tures beneficial to distinguishing vulnerable and benign code,
we firstly perform static analysis to generate a joint graph
structure, Code Property Graph (CPG) [30], for each input
code at the function-level. CPG is a classic abstract repre-
sentation, which integrates AST, Control Flow Graph (CFG),
and Program Dependence Graph (PDG), in security-related
program analysis and has been proved to be a powerful tool
for vulnerability discovery [13], [31]. Fig. 6 shows a simple
code sample and its corresponding CPG. AST organizes source
code as a tree to reflect its syntax structure, while CFG and
DFG provide the control- and data-flow information between
statements. These structured code representations preserve
rich syntactic and semantic information beneficial to feature
representation learning. The node set N of CPG is composed
of statement nodes in CFG (or PDG) and leaf nodes in AST,
and the edge set R is composed of three types of relations.

2) Code Embedding: After graph construction, we convert
the code tokens of each CPG’s node into low-dimensional vec-
tor representation for subsequent feature representation learn-
ing. Specifically, to effectively alleviate the vocabulary ex-
plosion problem, we first perform abstraction on user-defined
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2  {
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4     {
5        ++data;
6        unsigned int result = data;
7     }
8  }
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Fig. 6. An exemplary code sample (left) and its corresponding CPG (right).

identifiers by replacing formal parameters and local variables
defined by developers with a normalized symbol PARAM_i

and VARIABLE_j, respectively. Then, we use Word2Vec [32]
to encode leaf nodes in AST. Considering some important
structure information may be lost when converting graphs into
low-dimensional vectors with Word2Vec, we use Node2Vec
[33] as an alternative to encode statement nodes in CFG and
PDG. Node2Vec can capture data dependency and control
dependency between statements because it transfers the infor-
mation of two nodes bidirectionally and encodes a node with
the information from its surrounding structures. In addition,
we consider the abstract type of each node (e.g., Identifier,
Variable) since it reflects the code property represented by
each node, making the vulnerability patterns more general. We
encode the abstract type of each node by label encoding, which
transforms text into numerical value. Finally, we concatenate
the node representation Cv of each node v ∈ N with the type
representation Tv as the initial representation as follows:

h(0)
v = Cv||Tv (4)

where || denotes the concatenation operator.

3) Graph Representation Learning: To capture global vul-
nerability semantics for classification, we employ GAT [34], a
state-of-the-art GNN with multi-head attention, to iteratively
propagate and aggregate node information along with different
edges. Formally, given a CPG node v, its node representation

after t-th iteration is updated as:

h(t+1)
v =

1

|R|
∑
r∈R

(
σ

(∑
u∈Nr

α(t)
v,uz

(t)
u

))
(5)

z(t)
u = W (t)

r h(t)
u (6)

where R is the types of edges in CPG, and | · | represents the
size of a set. σ denotes the activation function, which we use
LeakyReLU here. Nr represents the 1-hop neighbors of node
v under the edge r. W r represents the weight matrix under
the edge r. αv,u represents the attention weight between the
node v and its neighbor u under the edge r:

α(t)
v,u =

exp(e
(t)
v,u)∑

p∈Nr

exp(e
(t)
v,p)

(7)

e(t)v,u = σ
(
a⃗r

(t)T
(
z(t)
v ||z(t)

u

))
(8)

where a⃗r
T denotes the transposition of a learnable weight

vector. || denotes the concatenation operation. ev,u can be
regarded as the association degree between node v and its
neighbor node u.

D. Contrastive Learning

To alleviate the labeled data scarcity issue, we propose a
new combinatorial contrastive learning-based training strategy
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to combine the strengths of large-scale unlabeled code corpus
and limited IoT vulnerability dataset. Specifically, for unla-
beled code samples along with their semantically equivalent
variants (positives), we compute self-supervised contrastive
loss to learn better code presentations. Meanwhile, for labeled
IoT vulnerability dataset, we calculate supervised contrastive
loss based on vulnerable code and their patched version.
Below, we elaborate on each component of our contrastive
learning with more technical details.

1) Self-Supervised Contrastive Loss: Specifically, given
a set of N randomly sampled unlabeled code pairs {c̃i},
where c̃2d−1 and c̃2d are the original and augmented
view of {cd}d=1,··· ,N , respectively, in the mini-batch B ≡
{1, · · · , 2N}, we employ the Noise Contrastive Estimate
(NCE) [21] to compute the self-supervised loss Lself

con :

Lself
con =

1

|B|
∑
i∈B

−log
exp(H ′

i ·H ′
j(i)/τ)∑

a∈A(i)

exp(H ′
i ·H ′

a/τ)
(9)

where H ′
i represents the low-dimensional embedding of the

graph-level representation H
(T )
i = {h(T )

v }Vv of an arbitrary
(original or augmented) sample c̃i via a projection head
consisting of a MLP layer with a single hidden layer. j(i) is
the index of the other view originating from the same source.
τ ∈ R+ is the temperature parameter to scale the loss, and
A(i) ≡ B\{i}.

2) Supervised Contrastive Loss: In addition, to effectively
leverage limited IoT vulnerability samples with human an-
notations, we employ an additional Supervised Contrastive
(SupCon) loss term [35] during the training process. The the
use of label information encourages the feature encoder to
closely aligns all samples from the same class in the latent
space to learn more accurate (in terms of samples with the
same label) cluster representations for vulnerable and benign
samples. Formally, the SupCon loss Lsup

con is written as:

Lsup
con =

1

|Bl|
∑
i∈Bl

−1

|Q(i)|
∑

q∈Q(i)

log
exp(H ′

i ·H ′
q/τ)∑

a∈A(i)

exp(H ′
i ·H ′

a/τ)

(10)

where Bl corresponds to the used IoT vulnerability dataset,
and Q(i) ≡ {q ∈ A(i) : ỹq = ỹi} is the set of indices
of all other positives that hold the same label. Particularly,
the patched version of the vulnerable code in Bl can serve
as hard negatives to capture more subtle yet discriminative
vulnerability features. 1/|Q(i)| is the positive normalization
factor which serves to remove bias present in multiple positives
samples and preserve the summation over negatives in the
denominator to increase performance.

Finally, the total loss used to train a robust feature encoder
over the batch is defined as:

Ltotal = (1− λ)Lself
con + λLsup

con (11)

where λ is a weight coefficient to balance the two loss terms.

E. Vulnerability Detection

In the detection phase, given a code snippet, we aim to apply
a well-trained detection model (more specifically, a binary
classifier) to identify potential IoT vulnerabilities. Similar to
the feature extraction phase (Section III-C) in model training,
program semantics reflected in the CPG of source code are
first captured through static analysis. Next, each node in
CPG is embedded into low-dimensional vectors through code
embedding. Then, both unstructured node embeddings and
structured relations in CPGs are feed into the well-trained
feature encoder (i.e., the GAT model trained with Eq. (11))
for feature extraction. Finally, the prediction (i.e., vulnerable
or not) is made by a classifier composed of a one-layer fully
connected layer.

F. Vulnerability Explanation

To derive explanations on why the detection model has
decide on the vulnerability, we follow the most related work
IVDetect [14], which aims to find a sub-graph G′

k, which
covers the key nodes (tokens/statements) and edges (program
dependencies) that are most decisive to the prediction label,
from the graph representation Gk of the detected vulnerable
code ck via GNNExplainer [19]. The main difference lies
in that we aim to seek both faithful (reflecting the decision
mechanism of the to-be-explained detection model) and stable
(explanation results should be consistent with the same input
for different runs) explanations. Hence, we incorporate a
novel deviation-aware loss term LAlign into GNNExplainer to
identify explanatory CPG sub-graphs while preserving their
alignment with original inputs.

Specifically, we first leverage the CPGs {Gk}nk=1 of other
vulnerable code from the dataset to obtain a global view
of the graph representation {

∑
v∈V′

k
hl+1
v,k /|V ′

k|}nk=1, where
hl
v,k denotes embeddings of node v in graph Gk at layer

l, and V ′
k is a set of selected nodes after graph pooling.

Then, a clustering algorithm is applied to divide the latent
representations of samples in the embedding space into X
groups. The representative graph embeddings are assigned as
anchors {hl+1,x}Xx=1 to measure the distance between Gk and
G′
k at l-th layer for alignment:

LAlign(HGk
,HG′

k
) =

∑
l

∑
v∈V′

k

||slv − ŝlv||22 (12)

where slv,x = ||hl+1
v −hl+1,x

v ||2 represents the relative distance
to k-th anchor (i.e., the clustering center of each group).

By comparing relative positions, our deviation-aware align-
ment loss LAlign provides a simple yet effective strategy to
encode the varying importance of each dimension for evaluat-
ing alignments in the embedding distribution manifold. Finally,
in order to generate both faithful and stable explanations, we
incorporate the deviation-aware alignment loss term LAlign

into GNNExplainer (Eq. (3)) as:

min
G

EG′
k∼GH(Ŷ|G = G′

k) + η · LAlign (13)

where η controls the balance between prediction preservation
and embedding alignment.
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TABLE II
DESCRIPTIVE STATISTICS OF OUR USED DATASET

Data Source Dataset # Vul # Non-vul

General Software
ReVeal 1,664 16,505
Devign 11,888 14,149
Big-Vul 10,547 168,752

IoT Software

Asterisk 94 17,755
FFmpeg 249 5,552

Httpd 57 3,850
LibPNG 45 577
LibTIFF 123 731
OpenSSL 159 7,068

Pidgin 29 8,626
VLC Player 44 6,115

Xen 671 9,023
Total 1,471 59,297

As a result, the code snippet corresponding to the extracted
sub-graph G′

k is the explanation for the detected vulnerability
sample ck.

IV. EXPERIMENTAL EVALUATION

In this section, we first introduce our research questions,
dataset, baselines, evaluation metrics, and implementation de-
tails. Then, we show results for each research question.

A. Research Questions

In this paper, we aim to answer the following research
questions (RQs):
• RQ1: How effective is EXVUL in IoT vulnerability detec-

tion as compared to other state-of-the-art approaches?
• RQ2: How well does EXVUL perform on explaining the

detection results?
• RQ3: How does combinatorial contrastive learning con-

tribute to the performance of EXVUL?
• RQ4: How does deviation-aware alignment contribute to

the performance of EXVUL?
• RQ5: What is the influence of hyper-parameters on the

performance of EXVUL?

B. Dataset

Given that most DL model-oriented vulnerability datasets
are not tailored for IoT vulnerabilities, following Mei et al.
[36], we adopt a small-scale vulnerability dataset consisting
of 1,471 real-world vulnerable functions crawled from nine
open-source software deployed on IoT devices. For example,
VLCPlayer is a multimedia playback software which is widely
integrated in smart home devices for multimedia file playing.
In addition, we also employ three general software vulnerabil-
ity datasets, including ReVeal [13], Devign [12], and Big-Vul
[37], to train baseline models.

Table II reports the statistics of two datasets. Column
1 reports the data source of each dataset. Column 2 lists

the concrete projects selected to collect vulnerability sam-
ples. Columns 3-4 denote the function-level statistics of each
project, including the number of vulnerable functions (Column
3) and non-vulnerable functions (Column 4). The Reveal
dataset [13] is collected by tracking the history vulnerability
fixes in two popular open-source projects: Linux Debian
Kernel and Chromium. In total, ReVeal dataset includes 18,169
functions, in which 9.9% of them are vulnerable (1,664
vulnerable functions). The Devign dataset [12] contains a set
of security issue-related commits from Linux Kernel, QEMU,
Wireshark, and FFmpeg projects. It includes 26,037 functions,
in which 45% of them are vulnerable (11,888 vulnerable
functions). The Big-Vul [37] dataset is collected from over
300 C/C++ GitHub projects. It covers approximately 10k vul-
nerable functions and 177k non-vulnerable functions involved
in vulnerability reports from 2002 to 2019. In total, there are
1,471 vulnerable functions along with 59,279 non-vulnerable
ones in IoT software.

C. Baselines

To demonstrate the effectiveness of EXVUL on vulnerabil-
ity detection, we adopt four state-of-the-art DL-based binary
vulnerability detectors:
• VulDeePecker [4] extracts program slices based on data-

flows between statements and leverages BLSTM to detect
buffer error vulnerabilities (CWE-119) and resource man-
agement error vulnerabilities (CWE-399).

• SySeVR [5] improves VulDeePecker by performing forward
and backward program slicing on PDG to extract control-
and data-flow-related code snippets as features and adopts
several RNN-based models for training.

• Devign [12] combines multiple code representations (e.g.,
AST, CFG) to model programs at the function-level, and
adopts GGNN [38] to learn comprehensive vulnerability
semantics for classification.

• ReVeal [13] proposes to leverage CPG and GGNN to
automatically learn the graph properties of source code.
Compared to traditional rule-based analysis tools [8], [9],

[10], these approaches have shown promising results in scal-
ability and effectiveness because they can automatically learn
implicit vulnerability features without any prior knowledge
[39].

To investigate the effectiveness of EXVUL on vulnerability
explanation, we employ three recent GNN-specific explanation
approaches as baselines:
• GNNExplainer [19] is one of the most popular explanation

approaches and has been integrated into the state-of-the-art
vulnerability explainer IVDetect to simplify the detected
vulnerable code to a minimal program dependence sub-
graph composed of a set of crucial statements along with
program dependencies while retaining the initial model
prediction as explanations. Its key idea lies in accomplishing
a maximum mutual information optimization task, which
leverages edge and feature masks to select important struc-
tures and features.

• PGExplainer [28] enables simultaneous explanation of
multiple instances, whereas GNNExplainer is developed for
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individual graph instance. It trains a parameterized mask
predictor (so-called explanation network) on a universal
embedding of graph edges to predict edge masks.

• GNN-LRP [40] leverages a higher-order Taylor decompo-
sition of model prediction to decompose the scores into the
importance of different walks. The relevance per walk is
computed using a back-propagation similar to LRP for each
node in the walk. The final output of GNN-LRP is the set
of walks associated with the prediction.

D. Evaluation Metrics

We used the following evaluation metrics to measure the
performance of EXVUL on vulnerability detection:
• Accuracy (Acc) evaluates the performance that how many

instances can be correctly labeled. It is calculated as: Acc =
TP+TN

TP+FP+TN+FN .
• Precision (Pre) is the fraction of true vulnerabilities among

the detected ones. It is defined as: Pre = TP
TP+FP .

• Recall (Rec) measures how many vulnerabilities can be
correctly detected. It is calculated as: Rec = TP

TP+FN .
• F1-score (F1) is the harmonic mean of Recall and Preci-

sion, and can be calculated as: F1 = 2 ∗ Rec∗Pre
Rec+Pre .

To quantify the quality of generated explanations, we
use three fine-grained Vulnerability-Triggering Paths (VTP)
metrics [41] to evaluate the faithfulness of explanations, and
the Stability metrics [42] to evaluate the consistency of ex-
planations, respectively. They are formally defined as follows:
• Mean Statement Precision (MSP): MSP = 1

N

∑N
i=1 SPi,

where SPi = |Se ∩ Sp|/|Se| represents the proportion of
contextual statements truly related to the detected vulnera-
bility sample i ∈ N in the explanations. Here, Se denotes
the set of explanatory statements provided by explainers,
while Sp denotes the set of labeled vulnerability-contexts
(ground truth) in the dataset. | · | represents the size of a set.

• Mean Statement Recall (MSR): MSR = 1
N

∑N
i=1 SRi,

where SRi = |Se ∩ Sp|/|Sp| denotes that how many
contextual statements in the triggering path of the detected
vulnerability sample i can be covered in explanations.

• Mean Intersection over Union (MIoU): MIoU =
1
N

∑N
i=1 IoUi, where IoUi = |Se ∩ Sp|/|Se ∪ Sp| reflects

the degree of overlap between the explanatory statements
and the contextual statements on the VTP.

• Stability (Stb): Stbi = 1
C2

M

∑C2
M

j=1 IoUj , where IoUj =

|Sm ∩ Sn|/|Sm ∪ Sn| reflects the degree of overlap be-
tween sample i’s explanatory statements in the run m and
n ∈ [1,M ]. C2

M is the combination operation, i.e., the total
combinations when comparing the results of any two runs.
We calculated the arithmetic mean for evaluation in our
experiments.

E. Implementation Details

Our experiments were performed on a computer with an
Nvidia Graphics Tesla T4 GPU, installed with Ubuntu 18.04,
CUDA 10.1. We implemented our approach in Python using
PyTorch2. We generated CPGs and semantically equivalent

2https://pytorch.org/

variants of the code snippets based on the ASTs parsed by
tree-sitter3. The dimension of the vector representation of
each node/token in CPG is set to 128 and the dropout is set
to 0.1. The other hyper-parameters of our approach are tuned
through grid search. For model training, we employed Code-
SearchNet [43], a large-scale unlabeled code corpus which
contains 2.1M bimodal comment-function pairs and 6.4M uni-
modal functions across six programming languages, to perform
self-supervised contrastive learning, and conducted supervised
contrastive learning on our IoT vulnerability dataset, in which
vulnerable samples are regarded as positives, and patches
(benign/non-vulnerable samples) are negatives (the patched
version of the anchor sample is hard negative).

F. RQ1: Effectiveness on Vulnerability Detection

Objective. Benefiting from the powerful representation capa-
bility of deep neural networks, many DL-based vulnerabil-
ity detection approaches have been proposed. However, as
manually constructing such a large-scale dataset with human
annotations for IoT vulnerabilities is non-trivial and time-
consuming, it’s unrealistic to train a well-performing IoT
vulnerability detection model. In this paper, we propose a
novel approach EXVUL, which combines the strengths of
large-scale unlabeled code corpus and limited labeled data
to train an effective IoT vulnerability detection model. The
experiments are conducted to investigate whether EXVUL
outperforms state-of-the-art DL-based approaches, which are
pre-trained on general software vulnerability dataset, on the
IoT vulnerability detection task.
Experimental Design. We considered four state-of-the-art
baselines: VulDeePecker, SySeVR, Devign, and ReVeal. As
mentioned earlier, since the above four DL-based binary
vulnerability detectors are not designed for IoT vulnerabilities,
we respectively trained them based on three general software
vulnerability datasets (randomly split into the ratio of 8:2 for
training and validation), and applied transfer learning to fine-
tune these pre-trained models on part of our IoT vulnerability
samples to port it for IoT vulnerability detection. For EXVUL,
80% of IoT code samples are treated as training data in
supervised contrastive learning, 10% of samples are treated as
validation data (also used for fine-tuning pre-trained baseline
models), and the left 10% of samples are treated as testing
data. We also keep the distribution as same as the original
ones in training, validating, and testing data. Besides, in
order to comprehensively compare the performance among
baselines and EXVUL, we considered four widely-used binary
classification metrics (i.e., Accuracy, Precision, Recall, and F1-
score) and conducted experiments on the IoT dataset.
Results. Fig. 7 shows the performance comparison of EXVUL
with respect to four state-of-the-art DL-based approaches (pre-
trained on three datasets) in terms of the aforementioned
evaluation metrics. Overall, EXVUL generally outperforms
all of the baselines, achieving 0.89 on Accuracy, 0.64 on
Precision, 0.69 on Recall, and 0.67 on F1.

In particular, we find that the average improvements of
EXVUL over each metric are significant, ranging from 33.44%

3https://tree-sitter.github.io/tree-sitter/
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(a) Comparison with baselines pre-trained on the Devign dataset.
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(b) Comparison with baselines pre-trained on the ReVeal dataset.
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(c) Comparison with baselines pre-trained on the Big-Vul dataset.

Fig. 7. Performance of IoT vulnerability detection regarding EXVUL and
baselines.

to 72.91% on Accuracy, from 28.29% to 63.12% on Precision,
from 10.09% to 137.06% on Recall, and from 19.52% to
98.78% on F1, respectively. These results verify the effec-
tiveness of our combinatorial contrastive learning strategy in
detecting IoT vulnerabilities without sufficient labeled data for
model training. The root cause for this performance gap is
that directly migrating a DL model pre-trained on a general
vulnerability dataset to IoT vulnerability detection via transfer
learning ignores the distribution disparity between the source
domain (i.e., general vulnerabilities) and target (IoT vulner-
abilities) in feature space, confusing the classifier seriously.
By contrast, benefiting from the combination of large-scale
unlabeled code corpus and limited labeled vulnerability data,
EXVUL learns to capture discriminative semantic features
of source code and leverages these features to distinguish
vulnerable code from benign ones.

Answer to RQ1: EXVUL outperforms the state-of-the-
art baselines on IoT vulnerability detection. Particularly, it
achieves overwhelming results at both Accuracy and F1-
score, which indicate that EXVUL equipped with self-
supervised contrastive learning as well as supervised con-
trastive learning has a stronger ability to learn the semantics
of IoT vulnerabilities.

G. RQ2: Explainability on Vulnerability Detection

Objective. Though many novel approaches have been pro-
posed and indeed achieved remarkable performance, they
fall short in the capability to explain why a given code is
predicted as vulnerable. The form of an explanation can be
diverse, such as vulnerability types [44], root cause [45],
similar vulnerability reports [46], and so on. In this paper,
we follow the related work IVDetect to formalize the vulner-
ability explanation as a fine-grained classification task, i.e.,
locating vulnerability-related code snippets. The experiments
are conducted to investigate whether EXVUL outperforms
state-of-the-art vulnerability explanation approaches in terms
of faithfulness and stability.
Experimental Design. We considered the three state-of-the-
art baselines: IVDetect, P2IM, and mVulPreter. To gain the
ground truths of the vulnerability samples in the testing set,
we adopted a simple yet effective labeling strategy [47],
i.e., comparing changed statements between each vulnerable
function and its corresponding fixed version in the corre-
sponding vulnerable function according to diff files. If a
statement was deleted or altered (i.e., starting with ”-” in diff
files), it would be labeled as vulnerable, and non-vulnerable
otherwise. In order to avoid introducing artificial deviation,
two postgraduates and one Ph.D participated in this labeling
process. If two postgraduates disagreed on the label of the
same sample, the sample would be forwarded to the Ph.D
evaluator for further investigation. In order to comprehensively
compare the performance among baselines and EXVUL, we
considered three faithfulness-specific metrics (i.e., MSP, MSR,
and MIoU). We reported results averaged across 100 IoT
vulnerabilities, which were randomly sampled from our IoT
dataset (independent from samples used for training EXVUL),
correctly detected by baselines and EXVUL. Due to the
randomness in initialization, the explanation for the same
instance given by an explainer could be different for different
runs. Thus, in addition to comparing to ground truths, we
also evaluate the obtained explanations in terms of stability.
For the same vulnerability sample, we ran each explainer five
times and reported the average values of the stability metric.
A higher stability score indicates more consistent explanations
at different runs.
Results. Table III shows the performance comparison of our
approach with respect to state-of-the-art vulnerability explain-
ers. As can be seen, EXVUL substantially outperforms the
best-performing approach PGExplainer by 22.97% in MSP,
49.55% in MSR, and 48.40% in MIoU, respectively. The main
reasons leading to this result are two folds. On the one hand,
Owing to our combinatorial contrastive learning, potential
vulnerable behaviour of programs are captured by EXVUL,
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TABLE III
EVALUATION RESULTS ON VULNERABILITY EXPLANATION IN

PERCENTAGE COMPARED WITH BASELINES

Approach Faithfulness Consistency
MSP MSR MIoU Stb

GNNExplainer 25.91 27.14 23.77 8.07
PGExplainer 36.48 33.56 28.12 16.22
Graph-LRP 33.61 38.02 26.94 13.67

EXVUL 44.86 50.19 41.73 35.64

leading to more reliable prediction labels (as discussed in
RQ1) for explanation generation. On the other hand, by in-
corporating our deviation-aware strategy into GNNExplainer,
EXVUL can help to identify more important substructures
used for predictions, hence yielding the best explanation
performances on all metrics (especially MSR).

The consistency of the explanations generated by each
explanation approach is also shown in Table III. Unfortunately,
the stability scores of all explanation approaches are below
20%. Among them, the consistency of the best-performing
explainer PGExplainer is only 16.22%, indicating that for
the same input, the explanations generated by each explainer
vary greatly at different runs and fail to meet the requirement
of trustworthiness. The above results show that the existing
explanation approaches suffer from significant variability in
the explanation of the same vulnerability. By contrast, we
can find that our approach significantly outperforms the state-
of-the-art explainers from 119.73% to 341.64% in terms of
stability, demonstrating the introduction of our deviation-aware
alignment strategy can significantly improve the consistency.

Answer to RQ2: The faithfulness and consistency of ex-
isting explanation approaches are not satisfactory, making it
difficult for security analysts to establish trust on the model
decision. By contrast, our proposed EXVUL significantly
outperforms the state-of-the-art explainers in terms of MSP,
MSR, MIoU, and Stb, demonstrating the practical value of
our approach in providing faithful and stable explanations.

H. RQ3: Impacts of Combinatorial Contrastive Learning

Objective. Different from traditional supervised learning-
based vulnerability detection framework, which trains a well-
performing model on the large-scale labeled dataset, we pro-
pose a new combinatorial contrastive learning-based training
strategy to combine the strengths of large-scale unlabeled code
corpus and limited IoT vulnerability dataset. Therefore, it
is important to conduct a study on how the combinatorial
contrastive learning affect the learning of IoT vulnerability
semantics.
Experimental Design. We compared the performance of four
versions of EXVUL: with only self-supervised contrastive
learning (denoted as EXVULself ), with only supervised con-
trastive learning (denoted as EXVULsup), without contrastive
learning (equivalent to tradition supervised learning with
cross-entropy, and denoted as EXVULCE , and with combi-

TABLE IV
EVALUATION RESULTS ON VULNERABILITY DETECTION IN PERCENTAGE

COMPARED WITH VARIANTS

Approach Accuracy Precision Recall F1-score

EXVULself 0.82 0.59 0.47 0.52
EXVULsup 0.75 0.57 0.61 0.59
EXVULCE 0.86 0.33 0.26 0.29

EXVUL 0.89 0.64 0.69 0.67

natorial contrastive learning (the default EXVUL). The exper-
imental dataset is set the same as the experiment of RQ1 (i. e.,
80% for training, 10% for validation, and 10% for testing). We
also consider the four performance measures(i. e., Accuracy,
Precision, Recall, and F1-score) for comprehensively studying
the impact of different training strategies.
Results. As shown in Table IV, compared with EXVULself

and EXVULsup, EXVUL improves the Accuracy by 8.53%
and 18.67%, respectively, and improves the F1-score by
28.85% and 13.56%, respectively. The reason for the improve-
ments is that, benefiting from the combination of large-scale
unlabeled code corpus and limited labeled vulnerability data,
EXVUL learns to capture discriminative semantic features
of source code and leverages these features to distinguish
vulnerable code from benign ones. In addition, we can find that
both EXVULself and EXVULsup outperform EXVULCE in
terms of all metrics. The potential cause for this performance
gap may be that suffering from the severe imbalanced sample
distribution (only 2.48% samples in our IoT dataset are vulner-
able), the classifier fails to identify vulnerable samples from
plenty of non-vulnerable samples. Furthermore, EXVULsup

slightly outperforms EXVULself by 29.79% in terms of
Recall. The results indicate that by performing supervised
contrastive learning on the labeled vulnerability dataset at the
same time as model training, the detection model can effec-
tively capture the vulnerability semantics for classification.

Answer to RQ3: Self-supervised and supervised contrastive
learning present their own advantages in learning program
semantics, and combining them together can produce the
best improvements on IoT vulnerability detection.

I. RQ4: Impacts of Deviation-Aware Alignment

Objective. As mentioned in RQ2, the reason why existing
explanation approaches are unreliable is that, due to the
randomness in initialization of the explainer, the explanation
for the same instance given by an explainer could be different
for different runs, which violates the stability of explanations.
Therefore, we want to conduct a deeper experiment on how
our proposed deviation-aware alignment strategy impacts the
performance of EXVUL on vulnerability explanation.
Experimental Design. Similar to RQ2, we still adopted three
aforementioned GNN-based explanation approaches (GNNEx-
plainer, PGExplainer, and Graph-LRP) as baselines. For each
approach, we created a variant by incorporate our deviation-
aware alignment loss term into its optimization (as we did in



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 11

2 4 6 8 1 0

1 0

2 0

3 0

4 0

5 0

6 0
 G N N E x p l a i n e r
 P G E x p l a i n e r
 G r a p h - L R P
 E X V u l ( G N N E x p l a i n e r )
 E X V u l ( P G E x p l a i n e r )
 E X V u l ( G r a p h - L R P )

R u n s

Stb
 (%

)

Fig. 8. The varying performance of each approach (with and without our
deviation-aware alignment strategy) in terms of Stability.

Eq. (13)). We empirically ran each approach ten times on 100
sampled IoT vulnerabilities used in RQ2, and calculated the
Stb metric after each run. Although the value of Stb may
benefit from more runs or randomness of graph sampling,
comparison between different execution rounds is beyond the
scope of this research and we leave that for future research.
Results. The evaluation results of each approach (with and
without our deviation-aware alignment strategy) are illustrated
in Fig. 8. According to the results, we find that it can be
seen that the overall stability increases slowly with increasing
runs. It is reasonable since the more rounds the explainer
runs, the more likely the explanations will overlap. In addi-
tion, the stability of all explanation approaches go up with
the incorporation with our deviation-aware alignment, which
validates effectiveness of our proposal in obtaining consistent
explanations.

Answer to RQ4: The overall stability increases slowly with
increasing runs. With the incorporation with our deviation-
aware alignment, the stability of each approach can be
significantly improved.

J. RQ5: Influences of Hyper-parameters on EXVUL

Objective. In our approach, two key hyper-parameters λ
and η affects the effectiveness of vulnerability detection and
explanation, respectively. The former balances the weights
between feature representations learned in self-supervised
and supervised manner, the latter makes a trade-off between
faithfulness and stability of generated explanations. Therefore
,we vary the hyper-parameters λ and η to explore EXVUL’s
sensitivity towards both two values.
Experimental Design. To keep simplicity, all other configura-
tions were kept consistent with RQ1 and RQ2, including data
split and metric computation. λ was varied from 0 to 1 with
an internal of 0.1, while η was varied at scale [1e-3, 1e-2,
1e-1, 1, 10, 1e2, 1e3].
Results. The evaluation results are shown in Fig. 9. In partic-
ular, for vulnerability detection, we can observe from Fig .9a
that, different weights of self-supervised and supervised loss in
our combinatorial contrastive learning has varying impart on
EXVUL’s performance. all the metrics of EXVUL go up with
the increasing of the weight of supervised contrastive part,
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Fig. 9. Sensitivity of EXVUL towards different hyper-parameters.

and reach the optimal performance (except Precision) when λ
equals 0.6. After that, each metric drop to different degrees.
The results indicate that the use of (partial) labeled samples
is benefit to the performance of IoT vulnerability detection.

In addition, for vulnerability explanation, we can find from
Fig. 9b that, higher weights of embedding alignment loss bring
a noticeable improvement in MSP, MSR, and MIoU, which
shows that our deviation-aware alignment strategy is helpful
for generating both faithful and stable explanations. However,
we also observe that blindly increasing the weight (larger than
10) is not always beneficial, and even result in a performance
drop (e.g., MSP and MIoU).

Answer to RQ5: Different settings of hyper-parameters can
influence the performance of EXVUL in vulnerability detec-
tion. Our default hyper-parameter settings achieve optimal
results.

V. THREATS AND LIMITATIONS

The first threat to validity comes from the application
scenario of our approach. Since our approach is designed for
code-centric vulnerability detection and evaluated on a C/C++
dataset, it cannot be used to detected vulnerabilities in IoT ap-
plications with only binaries or written in other programming
languages. However, benefiting from the language-agnostic
nature of CPG, EXVUL can be easily extended to these sce-
narios. In addition, different from dynamic approaches (e.g.,
Fuzzing [48], [49]) which are able to detect vulnerabilities
in real-time, our approach is statically constructed (i.e., off-
line training) and work during code review phase (i.e., on-
line detection). Thus, dynamic approaches can serve as a
supplement to our approach to construct a more effective
detection system throughout the application’s life cycle.

The second threat to validity is the computational effi-
ciency of our proposed approach. We employed CPG as a
model-understandable intermediate representation to extract
vulnerability features at the function-level. Given that the
function in a real-world project is commonly large (maybe
over 100 lines), graph construction is more complex and time-
consuming compared to other code representations such as
sequence and syntax tree. In the future, we try to explore
a more effective and simpler code representation to further
improve our approach.
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VI. RELATED WORK

A. DL-based Vulnerability Detection

The major breakthroughs in Deep Learning (DL) models
along with the ever-increasing public datasets has opened up
new opportunities to develop effective vulnerability detection
techniques without the need of hand-crafted vulnerability
patterns/rules. Prior works focus on representing source code
as sequences and use LSTM-like models to learn the syntactic
and semantic information of vulnerabilities [4], [5]. Li et al. [4]
proposed VulDeePecker, a slice-level vulnerability detection
approach which represents source code as sequences and
uses RNN (e.g., LSTM and BGRU) to learn the syntactic
and semantic information of vulnerabilities. Recently, a large
number of works [12], [13], [11], [50] turn to leveraging GNNs
to extract rich and well-defined semantics of the program
structure from graph representations for downstream vulnera-
bility detection tasks. For example, Zhou et al. [12] proposed
Devign, which combines multiple code representations to
model vulnerability features and adopts GGNN to learn rich
code semantics from structured graph representations, to detect
vulnerable functions.

Despite their effectiveness, the function-level or slice-level
detection results are still coarse-grained. To alleviate heavy
manual review, MVD [47], [51] and LineVD [52] formalizes
vulnerability detection as a fine-grained graph node classifica-
tion problem to identify suspicious vulnerable statements.

In contrast to these studies constructing an effective de-
tection model based on large-scale vulnerability data with
human annotations, we explore the potential of training a
well-performing DL model with limited labeled data for IoT
vulnerability detection.

B. Explainability on DL-based Vulnerability Detection

While DL-based code models are remarkably effective in
a variety of tasks, one growing concern about their adoption
is explainability. The requirement for explainability is more
urgent in vulnerability detection because it is hard to establish
trust on the system decision from simple binary (vulnerable
or benign) results without credible evidence. IVDetect [14]
built an additional model based on binary detection results to
derive crucial statements that are most relevant to the detected
vulnerability as explanations. LineVul [53] leverages the self-
attention mechanism inside the Transformer architecture to
locate vulnerable statements for explanation. Chakraborty et
al. [13] computed the contribution of each code token towards
the prediction. mVulPreter [54] combines the attention weight
with the vulnerability probability outputted by the multi-
granularity detector to compute the importance score for each
code slice. In addition, a few efforts simplified the instance
to be explained to a minimal set of statements that still
preserves the initial model prediction. For example, P2IM [55]
borrows Delta Debugging [56] to reduce a program sample to
a minimal snippet which a model needs to arrive at and stick
to its original vulnerable prediction to uncover the model’s
detection logic.

The main difference between our approach and the above
vulnerability explanation approaches is that existing ap-

proaches focus only on how to improve the explainability
of DL-based vulnerability detection models, ignoring special
concerns in security domains. By contrast, EXVUL proposes
a deviation-aware strategy, which aligns the original code
graph with its explanatory substructure in the latent space, and
incorporates it into existing explanation framework to obtain
more faithful and stable explanations.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we propose EXVUL, a novel DL-based
approach for effective and explainable IoT vulnerability clas-
sification. The key insight of EXVUL is that combining the
strengths of large-scale unlabeled code corpus and limited
labeled data can facilitate training an effective IoT vulnera-
bility detection model, and both faithful and stable explana-
tions can help security practitioners understand the detected
vulnerabilities. The experimental results show that EXVUL
significantly outperforms the state-of-the-art baselines in terms
of all metrics. In the near future, we plan to automatically
construct a large-scale IoT vulnerability dataset to explore
the generalizability of our approach. In addition, we aim to
work with our industry partners to deploy EXVUL in their
proprietary security systems to test its effectiveness in practice.
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