
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 1

EXVUL: Towards Effective and Explainable
Vulnerability Detection for IoT Devices

Sicong Cao, Xiaobing Sun, Member, IEEE, Wei Liu, Member, IEEE, Di Wu, Member, IEEE,
Jiale Zhang, Member, IEEE, Yan Li, Senior Member, IEEE, Tom H. Luan, Senior Member, IEEE,

and Longxiang Gao, Senior Member, IEEE

Abstract—As with anything connected to the internet, Internet
of Things (IoT) devices are also subject to severe cybersecurity
threats because an adversary could exploit vulnerabilities in
their internal software to perform malicious attacks. Despite
the promising results of Deep Learning (DL)-based approaches,
the lack of well-labeled IoT vulnerability samples available for
training and explainability pose a critical challenge to deploy
them in practice.

In this paper, we propose EXVUL, a novel DL-based approach
for Effective and eXplainable IoT VULnerability detection.
Specifically, inspired by recent advances of self-supervised learn-
ing in label-expensive tasks, we propose a new combinatorial
contrastive loss to combine the strengths of large-scale unlabeled
code corpus and limited IoT vulnerability samples. Then, given
a binary detection result, EXVUL provides a set of faithful
and stable code statements positively contributing to the model’s
predictions as understandable explanations. Experimental results
indicate that EXVUL outperforms state-of-the-art baselines by
33.44%-72.91% and 19.52%-98.78% with respect to the accuracy
and F1 score metrics, respectively. For vulnerability explanation,
EXVUL improves over the best-performing baseline explainer
PGExplainer by 22.97% in MSP, 49.55% in MSR, and 48.40% in
MIoU, demonstrating that the explanations provided by EXVUL
can correctly point out the vulnerable statements relevant to the
detected vulnerabilities.

Index Terms—Internet of Things (IoT), explainability, con-
trastive learning, stability

This research is supported by the National Natural Science Foundation of
China (No. 62206238); the Natural Science Foundation of Jiangsu Province
(No. BK20220562); the Six Talent Peaks Project in Jiangsu Province (No.
RJFW-053); the Jiangsu “333” Project and Yangzhou University Top-level
Talents Support Program (2019); the China Postdoctoral Science Foun-
dation (No. 2023M732985); the State Key Laboratory of Massive Per-
sonalized Customization System and Technology (No. H&C-MPC-2023-
02-05); Postgraduate Research & Practice Innovation Program of Jiangsu
Province (KYCX22 3502); and the China Scholarship Council Foundation
(No. 202308320436). (Corresponding author: Xiaobing Sun.)

Sicong Cao, Xiaobing Sun, Wei Liu, and Jiale Zhang are with the School
of Information Engineering, Yangzhou University, Yangzhou 225127, China
(e-mail: {dx120210088, xbsun, weiliu, jialezhang}@yzu.edu.cn).

Di Wu and Yan Li are with the School of Mathematics, Physics and
Computing, University of Southern Queensland, Toowoomba, QLD 4350,
Australia (email: {di.wu, yan.li}@unisq.edu.au).

Tom H. Luan is with the School of Cyber Engineering, Xidian University,
Xi’an 710126, China (e-mail: tom.luan@xidian.edu.cn).

Longxiang Gao is with the Key Laboratory of Computing Power Network
and Information Security, Ministry of Education, Shandong Computer Science
Center, Qilu University of Technology (Shandong Academy of Sciences),
Jinan 250353, China, Shandong Provincial Key Laboratory of Computer
Networks, Shandong Fundamental Research Center for Computer Science,
Jinan 250014, China, and also with the School of Mathematics, Physics and
Computing, University of Southern Queensland, Toowoomba, QLD 4350,
Australia (e-mail: gaolx@sdas.org).

I. INTRODUCTION

THE Internet of Things (IoT) landscape and its smart
devices are spreading in all aspects of our society, such

as autonomous vehicles and smart grids, improving service
delivery and increasing productivity. As reported in [1], the
global number of connected IoT devices is expected to grow
by 16%, to 16.7 billion active endpoints by 2023. In the
meanwhile, as with anything connected to the internet, IoT
devices are also subject to security threats, leading to severe
economic loss and equipment damage. One of the most
common IoT security threats is software vulnerabilities [2],
which arise from bugs in code as well as from insecure system
settings that can be exploited by threat actors for a variety of
malicious ends.

Benefiting from the great success of Deep Learning (DL)
on IoT security [3], an increasing number of learning-based
vulnerability detection approaches [4], [5], [6], [7] have been
proposed. Compared to conventional approaches [8], [9], [10]
that heavily rely on hand-crafted vulnerability specifications,
DL-based approaches focus on constructing complex Neural
Network (NN) models to automatically learn implicit vulner-
ability patterns from source code without human interven-
tion. Recently, inspired by the ability to effectively capture
structured semantic information (e.g., control- and data-flows)
of source code, Graph Neural Networks (GNNs) have been
widely adopted by state-of-the-art neural vulnerability detec-
tors [11], [12], [13], [14].

While demonstrated superior performance, these approaches
face two challenges that limit their potential when applied to
detecting vulnerabilities on IoT devices:

• Insufficient Labeled Dataset. Almost all DL-based vulner-
ability detection approaches follow the supervised learning
paradigm, i.e., training a best-performing detection model
over a well-labeled vulnerability datasets. However, collect-
ing such a large-scale dataset with human annotations for
software vulnerabilities in practice is time-consuming and
error-prone, let alone for IoT vulnerabilities. For example,
one of the most popular benchmarks, FFmpeg+QEMU [12],
which contains +22K functions with 45.66% of the vulnera-
ble ones, was manually labeled by four professional security
researchers for 600 man-hours. What’s worse, as reported in
a recent work [15], existing vulnerability datasets are prone
to varying degrees of quality issues such as noisy labels and

2327-4662 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 2

Unlabeled
Programs

Augmented
Variants

Contrastive
Learning

Data
Augmentation

Transformation
Operators

funcA()

{ ...

 int item;

 if (...) {

return;

 }else {...}

funcA()

{ ...

 int item;

 if (...) {

return;

 }else {...}

funcB()

{ ...

 var key;

 for (...)

{...}

 return key;

funcB()

{ ...

 var key;

 for (...)

{...}

 return key;

funcA()

{ ...

 int var0;

 if (...) {

return;

 }else {...}

funcA()

{ ...

 int var0;

 if (...) {

return;

 }else {...}

funcB()

{ ...

 var key;

 while (...)

{...}

 return key;

funcB()

{ ...

 var key;

 while (...)

{...}

 return key;

fk

fq q

k
+

k
-

k
-

k
-

k
-

k
-

k
-

k
-

k
-

Maximize

Minimize

Encoder

Negatives Buffer

g

g

Projector

Phase2: Feature Extraction

Graph
Construction

Feature
Embedding

Graph
Construction

Feature
Embedding

Graph
Construction

Feature
Embedding

Program Graph

Graph
Construction

Feature
Embedding

Program Graph

Phase2: Feature Extraction

Graph
Construction

Feature
Embedding

Program Graph

Phase1: Data Augmentation

Token-Level
Transformation

FE Variants

Statement-Level
Transformation

Token-Level
Transformation

FE Variants

Statement-Level
Transformation

Phase1: Data Augmentation

Token-Level
Transformation

FE Variants

Statement-Level
Transformation

Enhanced DetectorVulnerability Dataset

Phase2: Contrastive Learning

C
o

n
trastiv

e

E
n

co
d

er

C
lassifier

C
lassifier

Sample 1

Sample 1+

Sample k

...

Sample 1

Sample 1+

Sample k

...

C
o

n
trastiv

e

E
n

co
d

er

C
lassifier

Sample 1

Sample 1+

Sample k

...

Phase2: Contrastive Learning

C
o

n
trastiv

e

E
n

co
d

er

C
lassifier

Sample 1

Sample 1+

Sample k

...

Phase1: Data Augmentation

Token-Level
Transformation

FE Variants

Statement-Level
Transformation

Enhanced DetectorVulnerability Dataset

Phase2: Contrastive Learning

C
o

n
trastiv

e

E
n

co
d

er

C
lassifier

Sample 1

Sample 1+

Sample k

...

1 void bn_sqr_normal(BN_ULONG *r, const BN_ULONG *a,
 int n, BN_ULONG *tmp)
2 {
3 int i, j, max;
4 const BN_ULONG *ap;
5 BN_ULONG *rp;
6 ap = a;
7 rp = r;
8 rp[0] = rp[max - 1] = 0;
9 rp++;
10 j = n;
11 if (--j > 0) {
12 ap++;
13 rp[j] = bn_mul_words(rp, ap, j, ap[-1]);
14 rp += 2;
15 }
16 }

File: openssl/crypto/asn1/asn1_lib.c

Commit: https://github.com/openssl/openssl/blob/9b10986d7742a5105ac8c5f4eba8b103caf57ae9/

Vulnerability Type: Buffer Overrun
P2IM P2IM+ COCA GT

0

0

1

1

0

1

0

1

0

1

1

1

0

0

0

0

0

1

1

0

1

0

1

0

1

1

1

0

0

0

0

0

0

1

0

1

1

0

0

0

1

1

1

1

0

0

0

0

1

0

1

1

0

0

0

1

1

1

1

0

0

0

0

0

0

0

1

1

1

0

1

0

1

0

0

0

0

0

0

0

0

1

1

1

0

1

0

1

0

0

0

0

0

0

0

0

1

0

1

0

0

0

1

0

0

0

0

0

0

0

0

1

0

1

0

0

0

1

0

0

Detection
Model

Source
Code

Trainer

Vulnerability
Detection

Explainer

Explanations

R
ob

u
st

n
es

s
E
n
h
a
n
ce

m
en

t
E
xp

la
in

a
b
le

D

et
ec

ti
on

Detection
Model

Source
Code

Trainer

Vulnerability
Detection

Explainer

Explanations

R
ob

u
st

n
es

s
E
n
h
a
n
ce

m
en

t
E
xp

la
in

a
b
le

D

et
ec

ti
on

1 void bn_sqr_normal(BN_ULONG *r, const BN_ULONG *a,
 int n, BN_ULONG *tmp)
2 {
3 int i, j, max;
4 const BN_ULONG *ap;
5 BN_ULONG *rp;
6 ap = a;
7 rp = r;
8 rp[0] = rp[max - 1] = 0;
9 rp++;
10 j = n;
11 if (--j > 0) {
12 ap++;
13 rp[j] = bn_mul_words(rp, ap, j, ap[-1]);
14 rp += 2;
15 }
16 }

File: openssl/crypto/asn1/asn1_lib.c

Commit: https://github.com/openssl/openssl/blob/9b10986d7742a5105ac8c5f4eba8b103caf57ae9/

Vulnerability Type: Buffer Overrun

mVul

Preter
IVDetect P2IM COCA

0

0

1

0

1

1

0

0

1

1

1

1

0

1

0

0

0

1

0

1

1

0

0

1

1

1

1

0

1

0

0

0

0

1

1

1

1

0

0

1

1

0

1

0

0

0

0

0

1

1

1

1

0

0

1

1

0

1

0

0

0

0

0

1

0

1

1

0

0

0

1

1

1

1

0

0

0

0

1

0

1

1

0

0

0

1

1

1

1

0

0

0

0

0

0

0

1

1

1

0

1

0

1

0

0

GT

0

0

0

0

0

0

1

0

1

0

0

0

1

0

0

Phase1: Data Augmentation

Dataset

Functionally
Equivalent
Variants

Injection Sites
Localization

Augmentation
Operator Selection

Transformation
Application

Injection Sites
Localization

Augmentation
Operator Selection

Transformation
Application

Injection Sites
Localization

Augmentation
Operator Selection

Transformation
Application

Phase2: Combinatorial Contrastive Learning

Mini-Batch

R
obu

st
D

etector
M

od
el

T
ra

ining

Self-Supervised Contrastive Learning

Supervised Contrastive Learning

F
eatu

re

E
n

co
d

er

P
ro

je
cto

r
P

ro
je

cto
r

Sample 1

Sample 1+

Sample k

...

Sample 1

Sample 1+

Sample k

...

F
eatu

re

E
n

co
d

er

P
ro

je
cto

r

Sample 1

Sample 1+

Sample k

...

F
eatu

re

E
n

co
d

er

P
ro

je
cto

r

Sample 1

Sample 1+

Sample k

...

F
eatu

re

E
n

co
d

er

P
ro

je
cto

r
P

ro
je

cto
r

Sample 1

Sample 1+

Sample k

...

Sample 1

Sample 1+

Sample k

...

F
eatu

re

E
n

co
d

er

P
ro

je
cto

r

Sample 1

Sample 1+

Sample k

...

F
eatu

re

E
n

co
d

er

P
ro

je
cto

r

Sample 1

Sample 1+

Sample k

...

F
eatu

re

E
n

co
d

er

P
ro

je
cto

r

Sample 1

Sample 1+

Sample k

...

F
eatu

re

E
n

co
d

er

P
ro

je
cto

r

Sample 1

Sample 1+

Sample k

...

F
eatu

re

E
n

co
d

er

P
ro

je
cto

r

Sample 1

Sample 1+

Sample k

...

F
eatu

re

E
n

co
d

er

P
ro

je
cto

r

Sample 1

Sample 1+

Sample k

...

𝓛 sup
con𝓛 sup
con

𝓛 self
con𝓛 self
con

(a) Ground Truth

(b) Factual

Reasoning

(c) Counterfactual

Reasoning

Detection
Phase

Vulnerable BenignVulnerable Benign

Feature

Engineering

Source Code

Embedding

Detector Benign

Vulnerable

Explainer Explanations

Feature

Engineering

Source Code

Embedding

Detector Benign

Vulnerable

Explainer Explanations

Explanation
Phase

特征嵌入

漏洞
数据库

待测程序

静态分析

节点嵌入

边嵌入

节点嵌入

边嵌入
漏洞检测模型

样本数据平衡 漏洞特征挖掘样本数据平衡 漏洞特征挖掘样本数据平衡 漏洞特征挖掘

漏洞 非漏洞

抽象语法树AST

控制流图CFG

数据流图DFG

抽象语法树AST

控制流图CFG

数据流图DFG

基于代码复合图

的漏洞特征建模

基于流敏感图神经网络

的检测模型构建

模型

训练

被测

样本

训练样本

AST抽取

历史漏洞
修复报告
历史漏洞
修复报告

预处理

AST分类

词嵌入

层次注意力

网络 关联规则挖掘

漏洞
症状

漏洞
成因

漏洞
症状

漏洞
成因

关联矩阵

新漏洞
报告
新漏洞
报告

预处理 词嵌入

层次注意力

网络 漏洞
成因

漏洞
症状

分类概率优化

漏洞类型

文本

Diff

文本

症状

概率

成因

概率

AST抽取

历史漏洞
修复报告

预处理

AST分类

词嵌入

层次注意力

网络 关联规则挖掘

漏洞
症状

漏洞
成因

关联矩阵

新漏洞
报告

预处理 词嵌入

层次注意力

网络 漏洞
成因

漏洞
症状

分类概率优化

漏洞类型

文本

Diff

文本

症状

概率

成因

概率

代码

序列化AST

安全属性

历史漏洞
修复报告
历史漏洞
修复报告

漏洞代码

补丁代码

漏洞代码

补丁代码

经验研究

编码器解码器

注意力机制

编码器解码器

注意力机制

Transformer

编码器解码器

注意力机制

Transformer x12

新漏洞
报告
新漏洞
报告

漏洞代码

自然语言描述

代码

序列化AST

安全属性

自动漏洞

修复模型

测试用例过滤

波束搜索

测试用例过滤

波束搜索

测试用例过滤

波束搜索

漏洞补丁

代码

序列化AST

安全属性

历史漏洞
修复报告

漏洞代码

补丁代码

经验研究

编码器解码器

注意力机制

Transformer x12

新漏洞
报告

漏洞代码

自然语言描述

代码

序列化AST

安全属性

自动漏洞

修复模型

测试用例过滤

波束搜索

漏洞补丁

1 static ssize_t qrtr_tun_write_iter(struct kiocb *iocb,
 struct iov_iter *from)
2 {
3 kbuf = kzalloc(len, GFP_KERNEL);
4 if (!kbuf)
5 return -ENOMEM;
6 if (!copy_from_iter_full(kbuf, len, from))
7 return -EFAULT;
8 ret = qrtr_endpoint_post(&tun->ep, kbuf, len);
9 return ret < 0 ? ret : len;
10 }

File: net/qrtr/tun.c

Commit: https://github.com/torvalds/linux/commit/a21b7f0cff1906a93a0130b74713b15a0b36481d

Vulnerability Type: Missing Release of Memory after Effective Lifetime (CWE-401)

Run 2

0

0
0
1
1
1
0
1
0

0

Run 1

0

0
1
1
0
0
1
0
1

0

Fig. 1. Explanation results (i.e., vulnerability-related contexts highlighted
by “1”) achieved by a leading vulnerability explainer IVDetect on the same
vulnerable code in Linux Kernel.

duplication, which may seriously degrade the reliability of
detection models.

• Lack of Explainability. Due to the black-box nature of NN
models, GNN-based approaches fall short in the capability
to explain why a given code is predicted as vulnerable
[13], [16]. Such a lack of explainability could hinder their
adoption when applied to real-world usage as substitutes
for traditional security analyzers [17]. To reveal the decision
logic behind the binary detection results (vulnerable or not),
several approaches have been proposed to provide additional
explanatory information [18]. For example, IVDetect [14]
leverages a model-agnostic explanation approach, named
GNNExplainer [19], to simplify the detected vulnerable
code to a minimal program dependence sub-graph con-
sisting of a set of crucial statements along with program
dependencies while retaining the initial model prediction as
explanations. Unfortunately, due to the complexity of code
structures and the diversity of candidate program subsets,
existing instance-based explanation approaches may break
the criteria of stability, i.e., such extracted explanations may
not be consistent with the same input for different runs. A
failure case is shown in Fig. 1, a memory leak vulnerability
occurs when the allocated buf (at line 3) is not released in
case of error or success return, allowing attackers to cause
a denial of service1. In the first run, IVDetect identifies
statements at line 3, 4, 7, 9 as vulnerable, while in the
second run, it turns to pinpoint statements at line 4, 5, 6, 8 as
explanations. As a result, explanations provided by existing
approaches fail to faithfully reflect the decision mechanism
of the detection model, making the security practitioners
quite confused and not trust the explanation results.

To tackle the above two challenges, we propose a novel DL-
based approach, named EXVUL, for Effective and eXplainable
IoT VULnerability detection. The key insights underlying our
approach include (❶) combining the strengths of large-scale
unlabeled code corpus and limited labeled data to train an
effective IoT vulnerability detection model, as well as (❷)
providing both faithful (reflecting the decision mechanism of
the to-be-explained detection model) and stable (explanation
results are consistent with the same input for different runs)
explanations. Specifically, to solve the first issue, EXVUL
adopts a novel combinatorial contrastive learning paradigm
to facilitate learning better code representations in a self-

1https://nvd.nist.gov/vuln/detail/CVE-2019-19079

supervised manner for the downstream detection task, while
making use of limited label information to distinguish IoT
vulnerable code from benign ones. To address the second
issue, we propose a deviation-aware strategy, which aligns
the feature embedding of the input code snippet with its
explanatory candidate set in the latent space to improve
inconsistency, and incorporate it into GNNExplainer to obtain
more faithful and stable explanations.

To evaluate the effectiveness of our proposed EXVUL, we
conduct experiments on a real-world IoT vulnerability dataset
composed of 1,471 IoT vulnerable functions. The experimental
results show that EXVUL significantly outperforms the state-
of-the-art baselines from 33.44% to 72.91% in terms of Accu-
racy, and from 19.52% to 98.78% in terms of F1, indicating
the effectiveness of EXVUL in IoT vulnerability detection.
Besides, EXVUL improves over the best-performing baseline
explainer PGExplainer by 22.97% in MSP, 49.55% in MSR,
and 48.40% in MIoU, demonstrating that the explanations
provided by EXVUL can correctly point out the vulnerable
statements relevant to the detected vulnerabilities. Finally, this
paper makes the following contributions:
• We propose a research problem that the lack of labeled

data and explainability pose a critical challenge to migrate
existing DL-based approaches to IoT vulnerability detection
and need to be treated together.

• We propose EXVUL, a novel DL-based approach for effec-
tive and explainable IoT vulnerability detection. EXVUL
adopts a combinatorial contrastive learning paradigm to
train a well-performing detection model over limited IoT
vulnerability samples, and incorporates a novel deviation-
aware alignment strategy into the state-of-the-art explana-
tion approach GNNExplainer to provide both faithful and
stable explanations.

• Extensive experimental results and user study show sub-
stantial improvements EXVUL brings to IoT vulnerability
detection and explainability.
The rest of this paper is organized as follows. Section II

introduces the background knowledge related to our problem.
Section III describes the details of our approach. Section
IV presents the experimental setup and results. Section V
discusses the possible threats to validity. Section VI reviews
the related work. Finally, Section VII concludes the paper and
outlines our future research agenda.

II. BACKGROUND

In this section, we briefly introduce the general pipeline
of DL-based vulnerability detection and explanation. Then,
we discuss related techniques used in our approach, including
contrastive learning and GNN-specific explanation framework.

A. Problem Definition

Following [14], [20], Explainable Vulnerability Detection
(EVD) is generally expanded from a well-trained binary clas-
sifier by appending a post-hoc explainer, and the “classification
with explanation” workflow for an individual instance can
be illustrated as Fig. 2. The definitions of EVD and its two
components (the detector and explainer) are formalized as:

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 3

2023/11/1 14:30 ASE.svg

file:///C:/Users/CSC/Desktop/ASE.svg 1/1

Detection
Phase

Feature
Engineering

Source Code

Embedding

Detector Benign

Vulnerable

Explainer Explanations

Explanation
Phase

Fig. 2. Workflow of DL-based vulnerability detection and explanation.

Data

Augmentation

j

r

a

rp

max

ap

j

rp

n 6

4

5

3

7

8

9

10 11

12 13

1

Unlabeled
Programs

Augmented
Variants

Contrastive
Learning

Data
Augmentation

Transformation
Operators

funcA()

{ ...

 int item;

 if (...) {

return;

 }else {...}

funcA()

{ ...

 int item;

 if (...) {

return;

 }else {...}

funcB()

{ ...

 var key;

 for (...)

{...}

 return key;

funcB()

{ ...

 var key;

 for (...)

{...}

 return key;

funcA()

{ ...

 int var0;

 if (...) {

return;

 }else {...}

funcA()

{ ...

 int var0;

 if (...) {

return;

 }else {...}

funcB()

{ ...

 var key;

 while (...)

{...}

 return key;

funcB()

{ ...

 var key;

 while (...)

{...}

 return key;

fk

fq q

k
+

k
-

k
-

k
-

k
-

k
-

k
-

k
-

k
-

Maximize

Minimize

Encoder

Negatives Buffer

g

g

Projector

Phase2: Feature Extraction

Graph
Construction

Feature
Embedding

Graph
Construction

Feature
Embedding

Graph
Construction

Feature
Embedding

Program Graph

Graph
Construction

Feature
Embedding

Program Graph

Phase2: Feature Extraction

Graph
Construction

Feature
Embedding

Program Graph

Phase1: Data Augmentation

Token-Level
Transformation

FE Variants

Statement-Level
Transformation

Token-Level
Transformation

FE Variants

Statement-Level
Transformation

Phase1: Data Augmentation

Token-Level
Transformation

FE Variants

Statement-Level
Transformation

Enhanced DetectorVulnerability Dataset

Phase2: Contrastive Learning

C
o
n
trastiv

e

E
n
co

d
er

C
lassifier

C
lassifier

Sample 1

Sample 1+

Sample k

...

Sample 1

Sample 1+

Sample k

...

C
o
n
trastiv

e

E
n
co

d
er

C
lassifier

Sample 1

Sample 1+

Sample k

...

Phase2: Contrastive Learning

C
o
n
trastiv

e

E
n
co

d
er

C
lassifier

Sample 1

Sample 1+

Sample k

...

Phase1: Data Augmentation

Token-Level
Transformation

FE Variants

Statement-Level
Transformation

Enhanced DetectorVulnerability Dataset

Phase2: Contrastive Learning

C
o
n
trastiv

e

E
n
co

d
er

C
lassifier

Sample 1

Sample 1+

Sample k

...

1 void bn_sqr_normal(BN_ULONG *r, const BN_ULONG *a,
 int n, BN_ULONG *tmp)
2 {
3 int i, j, max;
4 const BN_ULONG *ap;
5 BN_ULONG *rp;
6 ap = a;
7 rp = r;
8 rp[0] = rp[max - 1] = 0;
9 rp++;
10 j = n;
11 if (--j > 0) {
12 ap++;
13 rp[j] = bn_mul_words(rp, ap, j, ap[-1]);
14 rp += 2;
15 }
16 }

File: openssl/crypto/asn1/asn1_lib.c

Commit: https://github.com/openssl/openssl/blob/9b10986d7742a5105ac8c5f4eba8b103caf57ae9/

Vulnerability Type: Buffer Overrun
P2IM P2IM+ COCA GT

0

0

1

1

0

1

0

1

0

1

1

1

0

0

0

0

0

1

1

0

1

0

1

0

1

1

1

0

0

0

0

0

0

1

0

1

1

0

0

0

1

1

1

1

0

0

0

0

1

0

1

1

0

0

0

1

1

1

1

0

0

0

0

0

0

0

1

1

1

0

1

0

1

0

0

0

0

0

0

0

0

1

1

1

0

1

0

1

0

0

0

0

0

0

0

0

1

0

1

0

0

0

1

0

0

0

0

0

0

0

0

1

0

1

0

0

0

1

0

0

Detection
Model

Source
Code

Trainer

Vulnerability
Detection

Explainer

Explanations

R
ob

u
st

n
es

s
E
n
h
a
n
ce

m
en

t
E
xp

la
in

a
b
le

D

et
ec

ti
on

Detection
Model

Source
Code

Trainer

Vulnerability
Detection

Explainer

Explanations

R
ob

u
st

n
es

s
E
n
h
a
n
ce

m
en

t
E
xp

la
in

a
b
le

D

et
ec

ti
on

1 void bn_sqr_normal(BN_ULONG *r, const BN_ULONG *a,
 int n, BN_ULONG *tmp)
2 {
3 int i, j, max;
4 const BN_ULONG *ap;
5 BN_ULONG *rp;
6 ap = a;
7 rp = r;
8 rp[0] = rp[max - 1] = 0;
9 rp++;
10 j = n;
11 if (--j > 0) {
12 ap++;
13 rp[j] = bn_mul_words(rp, ap, j, ap[-1]);
14 rp += 2;
15 }
16 }

File: openssl/crypto/asn1/asn1_lib.c

Commit: https://github.com/openssl/openssl/blob/9b10986d7742a5105ac8c5f4eba8b103caf57ae9/

Vulnerability Type: Buffer Overrun

mVul

Preter
IVDetect P2IM COCA

0

0

1

0

1

1

0

0

1

1

1

1

0

1

0

0

0

1

0

1

1

0

0

1

1

1

1

0

1

0

0

0

0

1

1

1

1

0

0

1

1

0

1

0

0

0

0

0

1

1

1

1

0

0

1

1

0

1

0

0

0

0

0

1

0

1

1

0

0

0

1

1

1

1

0

0

0

0

1

0

1

1

0

0

0

1

1

1

1

0

0

0

0

0

0

0

1

1

1

0

1

0

1

0

0

GT

0

0

0

0

0

0

1

0

1

0

0

0

1

0

0

Phase1: Data Augmentation

Dataset

Functionally
Equivalent
Variants

Injection Sites
Localization

Augmentation
Operator Selection

Transformation
Application

Injection Sites
Localization

Augmentation
Operator Selection

Transformation
Application

Injection Sites
Localization

Augmentation
Operator Selection

Transformation
Application

Phase2: Combinatorial Contrastive Learning

Mini-Batch

R
obu

st
D

etector
M

od
el

T
ra

ining

Self-Supervised Contrastive Learning

Supervised Contrastive Learning

F
eatu

re

E
n
co

d
er

P
ro

je
cto

r
P

ro
je

cto
r

Sample 1

Sample 1+

Sample k

...

Sample 1

Sample 1+

Sample k

...

F
eatu

re

E
n
co

d
er

P
ro

je
cto

r

Sample 1

Sample 1+

Sample k

...

F
eatu

re

E
n
co

d
er

P
ro

je
cto

r

Sample 1

Sample 1+

Sample k

...

F
eatu

re

E
n
co

d
er

P
ro

je
cto

r
P

ro
je

cto
r

Sample 1

Sample 1+

Sample k

...

Sample 1

Sample 1+

Sample k

...

F
eatu

re

E
n
co

d
er

P
ro

je
cto

r

Sample 1

Sample 1+

Sample k

...

F
eatu

re

E
n
co

d
er

P
ro

je
cto

r

Sample 1

Sample 1+

Sample k

...

F
eatu

re

E
n
co

d
er

P
ro

je
cto

r

Sample 1

Sample 1+

Sample k

...

F
eatu

re

E
n
co

d
er

P
ro

je
cto

r

Sample 1

Sample 1+

Sample k

...

F
eatu

re

E
n
co

d
er

P
ro

je
cto

r

Sample 1

Sample 1+

Sample k

...

F
eatu

re

E
n
co

d
er

P
ro

je
cto

r

Sample 1

Sample 1+

Sample k

...

𝓛 sup
con𝓛 sup
con

𝓛 self
con𝓛 self
con

(a) Ground Truth

(b) Factual

Reasoning

(c) Counterfactual

Reasoning

Detection
Phase

Vulnerable BenignVulnerable Benign

Feature

Engineering

Source Code

Embedding

Detector Benign

Vulnerable

Explainer Explanations

Feature

Engineering

Source Code

Embedding

Detector Benign

Vulnerable

Explainer Explanations

Explanation
Phase

特征嵌入

漏洞
数据库

待测程序

静态分析

节点嵌入

边嵌入

节点嵌入

边嵌入
漏洞检测模型

样本数据平衡 漏洞特征挖掘样本数据平衡 漏洞特征挖掘样本数据平衡 漏洞特征挖掘

漏洞 非漏洞

抽象语法树AST

控制流图CFG

数据流图DFG

抽象语法树AST

控制流图CFG

数据流图DFG

基于代码复合图

的漏洞特征建模

基于流敏感图神经网络

的检测模型构建

模型

训练

被测

样本

训练样本

AST抽取

历史漏洞
修复报告
历史漏洞
修复报告

预处理

AST分类

词嵌入

层次注意力

网络 关联规则挖掘

漏洞
症状

漏洞
成因

漏洞
症状

漏洞
成因

关联矩阵

新漏洞
报告
新漏洞
报告

预处理 词嵌入

层次注意力

网络 漏洞
成因

漏洞
症状

分类概率优化

漏洞类型

文本

Diff

文本

症状

概率

成因

概率

AST抽取

历史漏洞
修复报告

预处理

AST分类

词嵌入

层次注意力

网络 关联规则挖掘

漏洞
症状

漏洞
成因

关联矩阵

新漏洞
报告

预处理 词嵌入

层次注意力

网络 漏洞
成因

漏洞
症状

分类概率优化

漏洞类型

文本

Diff

文本

症状

概率

成因

概率

代码

序列化AST

安全属性

历史漏洞
修复报告
历史漏洞
修复报告

漏洞代码

补丁代码

漏洞代码

补丁代码

经验研究

编码器解码器

注意力机制

编码器解码器

注意力机制

Transformer

编码器解码器

注意力机制

Transformer x12

新漏洞
报告
新漏洞
报告

漏洞代码

自然语言描述

代码

序列化AST

安全属性

自动漏洞

修复模型

测试用例过滤

波束搜索

测试用例过滤

波束搜索

测试用例过滤

波束搜索

漏洞补丁

代码

序列化AST

安全属性

历史漏洞
修复报告

漏洞代码

补丁代码

经验研究

编码器解码器

注意力机制

Transformer x12

新漏洞
报告

漏洞代码

自然语言描述

代码

序列化AST

安全属性

自动漏洞

修复模型

测试用例过滤

波束搜索

漏洞补丁

1 static ssize_t qrtr_tun_write_iter(struct kiocb *iocb,
 struct iov_iter *from)
2 {
3 kbuf = kzalloc(len, GFP_KERNEL);
4 if (!kbuf)
5 return -ENOMEM;
6 if (!copy_from_iter_full(kbuf, len, from))
7 return -EFAULT;
8 ret = qrtr_endpoint_post(&tun->ep, kbuf, len);
9 return ret < 0 ? ret : len;
10 }

File: net/qrtr/tun.c

Commit: https://github.com/torvalds/linux/commit/a21b7f0cff1906a93a0130b74713b15a0b36481d

Vulnerability Type: Missing Release of Memory after Effective Lifetime (CWE-401)

Run 2

0

0
0
1
1
1
0
1
0

0

Run 1

0

0
1
1
0
0
1
0
1

0

str1

str1

str

str

4

3

6

1

stringPtr

stringPtr

p

strlen(str)
&str1

5

8

10
11

str1

str1

str

str

4

3

6

1

stringPtr

stringPtr

p

strlen(str)
&str1

5

8

10
11

13

j

r

a

rp

max

ap

j

rp

n 6

4

5

3

7

8

9

10 11

12 13

1

j

r

a

rp

max

ap

j

rp

n 6

4

5

3

7

8

9

10 11

12 13

1

j

r

a

rp

max

ap

j

rp

n 6

4

5

3

7

8

9

10 11

12 13

1

j

r

a

rp

max

ap

j

rp

n 6

4

5

3

7

8

9

10 11

12 13

1

j

r

a

rp

max

ap

j

rp

n 6

4

5

3

7

8

9

10 11

12 13

1

j

r

a

rp

max

ap

j

rp

n 6

4

5

3

7

8

9

10 11

12 13

1

j

r

a

rp

max

ap

j

rp

n 6

4

5

3

7

8

9

10 11

12 13

1

j

r

a

rp

max

ap

j

rp

n 6

4

5

3

7

8

9

10 11

12 13

1

j

r

a

rp

max

ap

j

rp

n 6

4

5

3

7

8

9

10 11

12 13

1

j

r

a

rp

max

ap

j

rp

n 6

4

5

3

7

8

9

10 11

12 13

1

j

r

a

rp

max

ap

j

rp

n 6

4

5

3

7

8

9

10 11

12 13

1

j

r

a

rp

max

ap

j

rp

n 6

4

5

3

7

8

9

10 11

12 13

1

j

r

a

rp

max

ap

j

rp

n 6

4

5

3

7

8

9

10 11

12 13

1

j

r

a

rp

max

ap

j

rp

n 6

4

5

3

7

8

9

10 11

12 13

1

Detection
Model

Source
Code

Trainer

Vulnerability
Detection

Explainer

Explanations

R
ob

u
st

n
es

s
E
n
h
a
n
ce

m
en

t
E
xp

la
in

a
b
le

D

et
ec

ti
on

Positive: x+

Negative: x-

Original: x

E
n
cod

er

f (x+)

f (x-)

f (x)

Maximize

Minimize

Minimize

Fig. 3. Self-supervised contrastive learning pipeline.

DEFINITION 1 (EVD). Given a code snippet C, EVD first
performs feature engineering to embed it into a feature repre-
sentation H, and then generates two outputs respectively from
its detector and explainer: a predicted label Y ∈ {0, 1} with 1
for vulnerable and 0 otherwise, and an explanation E indicating
why the sample is predicted as vulnerable.

DEFINITION 2 (DETECTOR). The detection pipeline can be
further decoupled into two components, a feature encoder and
a classifier. It is defined as Y = g(f(H)), where the feature
encoder f(·) learns to capture vulnerability-related features
from H, and the classifier g(·) assigns it a binary label Y .

DEFINITION 3 (EXPLAINER). Given a code snippet C
detected as vulnerable, i.e., Y = 1, the explanation E is
a set of important features H′ ∈ H positively (or above a
certain threshold) contributing to the model’s prediction. These
important features imply the risky behaviors of the vulnerable
code.

B. Contrastive Learning

Given that the limited labeled data in downstream tasks,
Contrastive Learning (CL), a popular self-supervised learning
paradigm, has emerged as a promising approach in Computer
Vision (CV) [21] and Natural Language Processing (NLP) [22]
for learning better feature representations without supervision
from labels [23]. The goal of CL is to maximize the agreement
between original sample and its positive (i.e., similar) variant

2024/2/28 16:03 mvd.svg

file:///C:/Users/CSC/Desktop/mvd.svg 1/1

u

v
1-hop

𝒩(𝜈)

Fig. 4. Neighborhood aggregation scheme in GNNs.

while minimizing the agreement between original sample and
a negative (i.e., dissimilar) sample. Positive sample x+ is a
Semantically Equivalent (SE) variant derived from the anchor
x by applying built-in pretext tasks (also known as data
augmentation), while negative sample x− is the other sample
different from x. The general pipeline of CL is shown in Fig.
3. The positive sample x+ of an image x is constructed by
data augmentation such as rotation and cropping. Then, x+

and x will be fed into the feature encoder with other images
x− (labeled as negatives) to produce better embeddings via
minimizing the contrastive loss function.

C. GNN-specific Explanation Framework

Due to the outstanding representation learning ability for
structured graph data, Graph Neural Networks (GNNs) [24]
have been applied to a variety of research domains such as
natural science [25], knowledge graphs [26], and blockchain
[27]. As shown in Fig. 4, modern GNNs mostly follow a
neighborhood aggregation scheme, where the node feature is
updated by iteratively aggregating message from its κ-hop
neighbors, to capture the semantic features from the graph
structure. This procedure can be formulated by:

h(t)
v = σ

(
h(t−1)
v , AGG(t)

({
h(t−1)
u : u ∈ N (v)

}))
(1)

where h(t)
v is the feature representation of node v ∈ V at the

t-th iteration, u ∈ N (v) is the neighbors of v, and AGG(·)
and σ(·) denote aggregation (e.g., MEAN) and activation
(e.g., ReLU) functions for node feature computation. After
iterating T time steps, the final node representation matrix
H

(T)
k = {h(T)

v }Vv=1 of graph Gk is used for downstream tasks.
Despite their effectiveness, the lack of explainability creates

key barriers to the adoption of GNNs in practice. Recently,
several studies [19], [28] have attempted to explain the de-
cisions of GNNs by applying a perturbation-based strategy,
a representative effort is GNNExplainer [19]. Typically, it
formulates the problem by maximizing the Mutual Informa-
tion (MI), which quantifies the consistency between original
predictions and prediction of candidate explanation, between
the minimal explanatory sub-structure G′

k of the k-th graph Gk

and its predicted label Ŷ:

max
G′
k

MI(Ŷ,G′
k) = H(Ŷ)−H(Ŷ|G = G′

k) (2)

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 4

where H(Ŷ) is the entropy term and H(Ŷ|G = G′
k) is the

conditional entropy term.
For optimization, GNNExplainer treats the sub-graph G′

k

as a random graph variable G and leverages edge mask to
find a sub-graph that can best predict the original output Ŷ as
follows:

min
G

EG′
k∼GH(Ŷ|G = G′

k) (3)

After optimization, the sub-graph G′
k is the generated ex-

planations for the prediction of the input graph Gk.

III. OUR APPROACH: EXVUL

In this section, we present the details of our novel approach
named EXVUL, which integrates accurate binary results and
understandable explanations for effective and explainable IoT
vulnerability detection.

A. Overview

Fig. 5 shows the overall architecture of our proposed
EXVUL approach, which consists of three main phases: model
training, vulnerability detection, and vulnerability explanation.

The model training phase includes three steps. In Step
1 (Section III-B), EXVUL conducts multiple semantically-
preserving transformation on unlabeled code corpus to con-
struct equivalent variants and arranges them into a mini-
batch for self-supervised contrastive learning. The labeled
dataset (including vulnerable code and their corresponding
patched version) is fed into another mini-batch for supervised
contrastive learning. Then, in Step 2 (Section III-C), both
unlabeled and labeled samples are embedded into numerical
graph representations through graph construction and code
embedding, and then fed into an attention-based GNN to
extract representative features. Finally, in Step 3 (Section
III-D), a well-performing IoT vulnerability detection model
is produced by performing our novel combinatorial contrastive
learning over the representations of both unlabeled and labeled
code samples in the latent feature space.

In the vulnerability detection phase (Section III-E), EXVUL
first splits the target program into functions and repeats feature
extraction (Step 2) to obtain corresponding vector represen-
tations. Then, for each code snippet, both unstructured node
embeddings and structured relations are feed into the well-
trained detection model for classification.

In the vulnerability explanation phase (Section III-F),
EXVUL incorporates a novel deviation-aware alignment strat-
egy into the state-of-the-art explanation approach GNNEx-
plainer to provide both faithful and stable explanations.

B. Data Augmentation

In order to construct positive variants of unlabeled programs
for self-supervised contrastive learning, we first perform static
analysis to parse each source code into an Abstract Syntax
Tree (AST) and traverse it to search for potential injection
locations. Following [29], once an injection location is found,
an applicable augmentation operator Φ ∈ {ϕ1, ϕ2, · · · , ϕ6}
(shown in Table I) will be randomly selected and applied to get

TABLE I
SEMANTIC-PRESERVING TRANSFORMATIONS WE ADOPTED FOR DATA

AUGMENTATION

No. Name Description
1 Identifier

Renaming
Substitute the function/variable name
with a random token.

2 Operand
Swap

Swap the operands of binary logical op-
erations.

3 Statement
Permutation

Swap two lines of statements that have
no dependency.

4 Loop
Exchange

Replace for loops with while loops or
vice versa.

5 Block Swap Swap then block of a chosen if state-
ment with its corresponding else block.

6 Switch to If Replace a switch statement with its
equivalent if statement.

the transformed node. We then adapt the context accordingly,
and translate it to the positive variants. Subsequently, we ar-
range original code samples along with their SE variants (i.e.,
positives) as inputs in a mini-batch. In this way, augmented
samples originated from one pair are negatively correlated
to any sample from other pairs within a mini-batch during
self-supervised contrastive learning. For supervised contrastive
learning, we directly regard samples with the same label as
positives and the others as negatives.

C. Feature Extraction

After data augmentation, both unlabeled original-variant
sample pairs and labeled vulnerability dataset should be con-
verted into feature embeddings acceptable for DL models.
In particular, feature extraction includes three main steps,
including graph construction, code embedding, and graph
representation learning.

1) Graph Construction: To model the discriminative fea-
tures beneficial to distinguishing vulnerable and benign code,
we firstly perform static analysis to generate a joint graph
structure, Code Property Graph (CPG) [30], for each input
code at the function-level. CPG is a classic abstract repre-
sentation, which integrates AST, Control Flow Graph (CFG),
and Program Dependence Graph (PDG), in security-related
program analysis and has been proved to be a powerful tool
for vulnerability discovery [13], [31]. Fig. 6 shows a simple
code sample and its corresponding CPG. AST organizes source
code as a tree to reflect its syntax structure, while CFG and
DFG provide the control- and data-flow information between
statements. These structured code representations preserve
rich syntactic and semantic information beneficial to feature
representation learning. The node set N of CPG is composed
of statement nodes in CFG (or PDG) and leaf nodes in AST,
and the edge set R is composed of three types of relations.

2) Code Embedding: After graph construction, we convert
the code tokens of each CPG’s node into low-dimensional vec-
tor representation for subsequent feature representation learn-
ing. Specifically, to effectively alleviate the vocabulary ex-
plosion problem, we first perform abstraction on user-defined

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 5

2023/11/7 23:10 Overview.svg

file:///C:/Users/CSC/Desktop/Overview.svg 1/1

Detection
Model

To-be-explained
Code

Benign

Vulnerable

Vulnerability Detection

Graph Construction

Code Embedding

Code
Type

Graph
Representation

LearningGraph
Representation

LearningGraph
Representation

Learning

t+1

t

T

Step 2: Feature Extraction

Unlabeled
Code Corpus

Transformation
Operators

Step 1: Data
Augmentation

Variants

Labeled
Vulnerability Dataset

Input

Supervised
Self-

Supervised

Push
Pull

Pu
sh

Pull

Step 3: Contrastive Learning

Output 1

Feature
Extraction

Model Training

Explainer

Mutual Information
Maximization

Deviation-aware
Alignment

Explanations

Vulnerability
Explanation

Output 2

Fig. 5. The overall architecture of our proposed EXVUL.

GRU

GRUGRU

GRUGRU

GRUGRU

GRU

GRU

GRU

GRU

代码属性图 节点特征提取 GGNN节点嵌入 图嵌入

GRU

GRU

GRU

GRU

代码属性图 节点特征提取 GGNN节点嵌入 图嵌入

Input

Phase 1: Extracting syntax

and semantic information

Phase 3: Training model

Phase 4: Detecting vulnerability

Output

···
···
···

···

Aggregation

Function 1

Function 2

Function 3

Header

···
···

Function 1

Function 2

Function 3

Header

···

Source program file

NVD GitHub

Trained model

Test DataTest Data Classifier

Target programs

vulnerable or not

0

1

Step 2. Graph Node Embedding

Input

Step 1. Graph Generation for

Different Code Representations

Function 1

Function 2

Function 3

Header

···
···

Function 1

Function 2

Function 3

Header

···

Source code

NVD GitHub

Word2Vec

Node2Vec

Step Network

Core Network

···

Step 3. Feature Representations Learning

Feature vector

Training dataset

·

·

·

·

·

·

·

·

·

Softmax

Detection Model

AST NCS

CFG

Label encoding

Feature vector

Token

int

num

···

void

result

Step Network

Core Network

Matching

Model

Balanced dataset

Step 4. Multi-Class Balancing

Step 5. Vulnerability Detection

Step 1Step 2Step 3

Step 6. Similar Vulnerability Searching

Vulnerability report

Target program

Output

Suspicious function 1 ---- type 3

Suspicious function 2 ---- type 1

Suspicious function 3 ---- type 2

.

.

.

Suspicious function k ---- type 7

Label

ParameterType

Identifier

···

ReturnType

Identifier

PDG

Suspicious functions

Vulnerability types

Similar vulnerabilities

&

Patches

SMOM

AST

 PDG
CFGCFG

Minority class c1

Majority class c

Minority class c2
NCS

graph 1 graph 2

Matching Model

Vulnerability report

Training data

Joern

Clang

Suspicious functions

Vulnerability types

Similar vulnerabilities

&

Patches

Top-k

AST

 PDG
CFGCFG

NCS

AST

 PDG
CFG

NCSDetection Model
Suspicious functions

Prediction types

void

ReturnType

unsigned int

PARAM_1[]

ParameterList

PARAM_1[]

Identifier

unsigned int

ParameterType

unsigned int

IdentifierDeclType

VARIABLE_1

Identifier

VARAIABLE_1

= PARAM_1[2]

AssignmentExpr

VARIABLE_1

Identifier

VARAIABLE_1

= PARAM_1[2]

AssignmentExpr

PARAM_1

Identifier

2

PrimaryExpr

++

IncDec

VARAIABLE_1

Identifier

unsigned int

IdentifierDeclType

VARIABLE_2

Identifier

VARIABLE_2 =

VARIABLE_1

AssignmentExpr

VARIABLE_1

Identifier

void

CWE190_Integer_Overflow

(unsigned int PARAM_1[])

FunctionDef

unsigned int VARAIABLE_1 =

PARAM_1[2]

IdentifierDeclStatement

++VARAIABLE_1

ExpressionStatement

unsigned int VARIABLE_2

= VARIABLE_1

IdentifierDeclStatement

Exit
PARAM_1 VARIABLE_1

printUnsignedLine

(VARIABLE_2)

ExpressionStatement

Exit
printUnsignedLine

(VARIABLE_2)

CallExpression

printUnsignedLine

Callee

VARIABLE_2

Identifier

VARIABLE_2

PDG edge

CFG edge

AST edge

PDG edge

CFG edge

AST edge

void

ReturnType

unsigned int

PARAM_1[]

ParameterList

PARAM_1[]

Identifier

unsigned int

ParameterType

unsigned int

IdentifierDeclType

VARIABLE_1

Identifier

VARAIABLE_1

= PARAM_1[2]

AssignmentExpr

VARIABLE_1

Identifier

VARAIABLE_1

= PARAM_1[2]

AssignmentExpr

PARAM_1

Identifier

2

PrimaryExpr

++

IncDec

VARAIABLE_1

Identifier

unsigned int

IdentifierDeclType

VARIABLE_2

Identifier

VARIABLE_2 =

VARIABLE_1

AssignmentExpr

VARIABLE_1

Identifier

void

CWE190_Integer_Overflow

(unsigned int PARAM_1[])

FunctionDef

unsigned int VARAIABLE_1 =

PARAM_1[2]

IdentifierDeclStatement

++VARAIABLE_1

ExpressionStatement

unsigned int VARIABLE_2

= VARIABLE_1

IdentifierDeclStatement

Exit
PARAM_1 VARIABLE_1

printUnsignedLine

(VARIABLE_2)

ExpressionStatement

Exit
printUnsignedLine

(VARIABLE_2)

CallExpression

printUnsignedLine

Callee

VARIABLE_2

Identifier

VARIABLE_2

PDG edge

CFG edge

AST edge

1 void func(unsigned int arr[])
2 {
3 unsigned int data = arr[2];
4 {
5 ++data;
6 unsigned int result = data;
7 }
8 }

void

ReturnType

unsigned int

Param_1[]

ParameterList

Var_1[]

Identifier

unsigned int

ParameterType

unsigned int
Identifier

DeclType

Var_1 =

Param_1[2]

AssignmentExpr

Var_1

Identifier

Param_1

Identifier

++

IncDec

Var_1

Identifier

unsigned int
Identifier

DeclType

Var_2

Identifier

Var_2 = Var_1

AssignmentExpr

Var_1

Identifier

void func(unsigned

int Param_1[])

FunctionDef

unsigned int Var_1 =

Param_1[2]

IdentifierDeclStatement

++Var_1

ExpressionStatement

unsigned int Var_2 = Var_1

IdentifierDeclStatement

Entry Param_1

Exit

2

PrimaryExpr

Var_1

PDG 边

CFG 边

AST 边

PDG 边

CFG 边

AST 边

PDG 边

CFG 边

AST 边

void

ReturnType

unsigned int

Param_1[]

ParameterList

Var_1[]

Identifier

unsigned int

ParameterType

unsigned int
Identifier

DeclType

Var_1 =

Param_1[2]

AssignmentExpr

Var_1

Identifier

Param_1

Identifier

++

IncDec

Var_1

Identifier

unsigned int
Identifier

DeclType

Var_2

Identifier

Var_2 = Var_1

AssignmentExpr

Var_1

Identifier

void func(unsigned

int Param_1[])

FunctionDef

unsigned int Var_1 =

Param_1[2]

IdentifierDeclStatement

++Var_1

ExpressionStatement

unsigned int Var_2 = Var_1

IdentifierDeclStatement

Entry Param_1

Exit

2

PrimaryExpr

Var_1

PDG 边

CFG 边

AST 边

测试集

训练集

检测阶段

训练阶段

重采样

表示学习

重采样

表示学习

特征提取

struct

smb2_read_plain_req

IdentifierDeclType

*req = NULL

AssignmentExpr

req
Identifier

NULL

Identifier

req

DFG edge

CFG edge

AST edge

DFG edge

CFG edge

AST edge

rc = cifs_send_recv

(xid,…, &rsp_iov)

AssignmentExpr

rc

Identifier

cifs_send_recv

(xid,…, &rsp_iov)

CallExpr

cifs_send_recv

Callee

xid,…, &rsp_iov

ArgumentList

xid

Identifier

rsp_iov

Identifier
…

rc = cifs_send_recv

(xid,…, &rsp_iov)

ExpressionStatement

int SMB2_read (…)

FunctionDef

struct smb2_read_plain_req

*req = NULL

IdentifierDeclStatement

Entry

cifs_small_buf_release (req)

CallExpr

cifs_small_buf_release

Callee

req

Identifier

return rc

ReturnStatement

int

ReturnType

rc

Identifier

Exitreq

trace_smb3_read_err

(xid,…, rc)

CallExpr

xid

Identifier

req->PersistentFileId

FieldExpr
…

trace_smb3_read_err

(xid,…, rc)

ExpressionStatement

trace_smb3_read_err

Callee

xid,…, rc

ArgumentList

if (rc)

IfStatement

cifs_small_buf_release (req)

ExpressionStatement

PersistentFileId

FieldIdentifier

req

Identifier

released

re-used

struct

smb2_read_plain_req

IdentifierDeclType

*req = NULL

AssignmentExpr

req
Identifier

NULL

Identifier

req

DFG edge

CFG edge

AST edge

rc = cifs_send_recv

(xid,…, &rsp_iov)

AssignmentExpr

rc

Identifier

cifs_send_recv

(xid,…, &rsp_iov)

CallExpr

cifs_send_recv

Callee

xid,…, &rsp_iov

ArgumentList

xid

Identifier

rsp_iov

Identifier
…

rc = cifs_send_recv

(xid,…, &rsp_iov)

ExpressionStatement

int SMB2_read (…)

FunctionDef

struct smb2_read_plain_req

*req = NULL

IdentifierDeclStatement

Entry

cifs_small_buf_release (req)

CallExpr

cifs_small_buf_release

Callee

req

Identifier

return rc

ReturnStatement

int

ReturnType

rc

Identifier

Exitreq

trace_smb3_read_err

(xid,…, rc)

CallExpr

xid

Identifier

req->PersistentFileId

FieldExpr
…

trace_smb3_read_err

(xid,…, rc)

ExpressionStatement

trace_smb3_read_err

Callee

xid,…, rc

ArgumentList

if (rc)

IfStatement

cifs_small_buf_release (req)

ExpressionStatement

PersistentFileId

FieldIdentifier

req

Identifier

released

re-used

Statement-Level Semantics

Token-Level Semantics

步网络

核心网络

节点选择

fs

st

hTht

排序向量rt

fh

dct ϑs

代码属性图CPG

分类网络 漏洞类型 l̃

fc

样本质量评估

选择权重计算

合成样本生成

样本质量评估

选择权重计算

合成样本生成

���

特征挖掘模块 类别平衡模块 分类模块

步网络

核心网络

节点选择

fs

st

hTht

排序向量rt

fh

dct ϑs

代码属性图CPG

分类网络 漏洞类型 l̃

fc

样本质量评估

选择权重计算

合成样本生成

���

特征挖掘模块 类别平衡模块 分类模块

源代码 代码属性图

文本嵌入

类型嵌入

||

SA-GNN

检测模型

(a)漏洞特征抽取 (b)检测模型构建

待测代码

(a)漏洞特征抽取

检测模型

漏洞类型

(c)漏洞检测

1 static ssize_t qrtr_tun_write_iter(struct kiocb *iocb,
 struct iov_iter *from)
2 {
3 kbuf = kzalloc(len, GFP_KERNEL);
4 if (!kbuf)
5 return -ENOMEM;
6 - if (!copy_from_iter_full(kbuf, len, from))
7 + if (!copy_from_iter_full(kbuf, len, from)) {
8 + kfree(kbuf);
9 return -EFAULT;
10 + }
11 ret = qrtr_endpoint_post(&tun->ep, kbuf, len);
12 kfree(kbuf);
13 return ret < 0 ? ret : len;
14 }

……
……

……

……

……

Input
Layer

Hidden
Layer

Output
Layer

…
…

…

…

…

Input
Layer

Hidden
Layer

Output
Layer

Word2Vec Model

Type Encoder (1-dimension)

128
dimension

Reduced Graph

………

||
Concat

Operation

s1

s2

t

Target
Node

Source
Node

K_LinearK_Linear

Q_LinearQ_Linear

K_LinearK_Linear

V_LinearV_Linear

V_LinearV_Linear

…

…

WATTWATT

WATTWATT

WMSGWMSG

WMSGWMSG

⊗

⊗

S
ca

led

S
o
ftm

a
x

⊕

A_LinearA_Linear

⊕

Heterogeneous Graph Transformer Layer

Heterogeneous Attention Computation

Neighbor
Information Update

H
(l-1)

[t]

H
(l)

[t]

CVE-2016-9535
CWE-119
1 static void
2 swabHorAcc16(TIFF* tif, uint8* cp0, tmsize_t cc)
3 {
4 uint16* wp = (uint16*) cp0;
5 tmsize_t wc = cc / 2;
6 STIFFWwabArrayOfShort(wp, wc);
7 horAcc16(tif, cp0, cc);
8 }

CVE-2016-9535
CWE-119
1 static void
2 swabHorAcc16(TIFF* tif, uint8* cp0, tmsize_t cc)
3 {
4 uint16* wp = (uint16*) cp0;
5 tmsize_t wc = cc / 2;
6 STIFFWwabArrayOfShort(wp, wc);
7 horAcc16(tif, cp0, cc);
8 }

特征编码器
Code Property Graph

Initialization

Code

Type

Code

Type

层次感知漏洞

特征提取器

层次感知漏洞
特征提取器

层次感知漏洞

特征提取器

⊕

⊕

分类器

分类器

分类器

分类器

𝓛CE

 𝓛Hier
t

t+1

T

漏洞代码

Depth-1

Depth-2

粗
粒
度
→
细

粒
度

1003

... 11920

... 120129824

粗
粒
度
→
细

粒
度

1003

... 11920

... 120129824

Depth-1

Depth-2

粗
粒
度
→
细

粒
度

1003

... 11920

... 120129824

 [CWE-119,

CWE-120]

CWE-120

Conv
Conv Pool

Pool
Conv

Conv Pool
Pool

层次感知漏洞
特征提取器

Conv
Conv Pool

Pool

层次感知漏洞
特征提取器

(b)
基于
层次
感知
表示
学习
的漏
洞类
型识
别

(a)
基于
流敏
感图
神经
网络
的漏
洞语
句定
位

被测代码

漏洞函数
漏洞语句
漏洞类型

漏洞结点

非漏洞结点

程序切片点

数据流

控制流

语法树

漏洞结点

非漏洞结点

程序切片点

数据流

控制流

语法树

漏洞结点

非漏洞结点

程序切片点

数据流

控制流

语法树

源代码
SDGSDG

ASTAST

切片

代码
令牌

图编码器

子词分割器

语句编码器

子词分割器

语句编码器

Step2: 特征嵌入

Step3: 图学习

Step1: 特征抽取

漏洞定位模型

Detection
Model

To-be-explained
Code

Benign

Vulnerable

Vulnerability Detection

Graph Construction

Code Embedding

Code

Type

Code

Type

Graph Construction

Code Embedding

Code

Type

Graph
Representation

Learning

Graph
Representation

LearningGraph
Representation

Learning

Graph
Representation

LearningGraph
Representation

Learning

Graph
Representation

Learning

Graph
Representation

LearningGraph
Representation

LearningGraph
Representation

Learning

t+1

t

T
Graph Construction

Code Embedding

Code

Type

Graph
Representation

LearningGraph
Representation

LearningGraph
Representation

Learning

t+1

t

T

Step 2: Feature Extraction

Unlabeled
Code Corpus

Transformation
Operators

Step 1: Data

Augmentation

VariantsVariants

Labeled
Vulnerability Dataset

Input

Supervised
Self-

Supervised Supervised
Self-

Supervised

Step 3: Contrastive Learning

Output 1

Feature

Extraction

Model Training

Explainer

Mutual Information

Maximization

Deviation-aware

Alignment

Explanations

Vulnerability
Explanation

Output 2 Phase1: Data Augmentation

Dataset

Functionally
Equivalent
Variants

Injection Sites
Localization

Augmentation
Operator Selection

Transformation
Application

Injection Sites
Localization

Augmentation
Operator Selection

Transformation
Application

Injection Sites
Localization

Augmentation
Operator Selection

Transformation
Application

Phase2: Combinatorial Contrastive Learning

Mini-Batch

R
obu

st
D

etector
M

od
el

T
ra

ining

Self-Supervised Contrastive Learning

Supervised Contrastive Learning

F
eatu

re

E
n
co

d
er

P
ro

je
cto

r
P

ro
je

cto
r

Sample 1

Sample 1+

Sample k

...

Sample 1

Sample 1+

Sample k

...

F
eatu

re

E
n
co

d
er

P
ro

je
cto

r

Sample 1

Sample 1+

Sample k

...

F
eatu

re

E
n
co

d
er

P
ro

je
cto

r

Sample 1

Sample 1+

Sample k

...

F
eatu

re

E
n
co

d
er

P
ro

je
cto

r
P

ro
je

cto
r

Sample 1

Sample 1
+

Sample k

...

Sample 1

Sample 1
+

Sample k

...

F
eatu

re

E
n
co

d
er

P
ro

je
cto

r

Sample 1

Sample 1
+

Sample k

...

F
eatu

re

E
n
co

d
er

P
ro

je
cto

r

Sample 1

Sample 1
+

Sample k

...

F
eatu

re

E
n
co

d
er

P
ro

je
cto

r

Sample 1

Sample 1+

Sample k

...

F
eatu

re

E
n
co

d
er

P
ro

je
cto

r

Sample 1

Sample 1
+

Sample k

...

F
eatu

re

E
n
co

d
er

P
ro

je
cto

r

Sample 1

Sample 1+

Sample k

...

F
eatu

re

E
n
co

d
er

P
ro

je
cto

r

Sample 1

Sample 1
+

Sample k

...

𝓛 sup
con𝓛 sup
con

𝓛 self
con𝓛 self
con

void

ReturnType

unsigned int

Param_1[]

ParameterList

Var_1[]

Identifier

unsigned int

ParameterType

unsigned int
Identifier

DeclType

Var_1 =

Param_1[2]

AssignmentExpr

Var_1

Identifier

Param_1

Identifier

++

IncDec

Var_1

Identifier

unsigned int
Identifier

DeclType

Var_2

Identifier

Var_2 = Var_1

AssignmentExpr

Var_1

Identifier

void func(unsigned

int Param_1[])

FunctionDef

unsigned int Var_1 =

Param_1[2]

IdentifierDeclStatement

++Var_1

ExpressionStatement

unsigned int Var_2 = Var_1

IdentifierDeclStatement

Entry Param_1

Exit

2

PrimaryExpr

Var_1

PDG 边

CFG 边

AST 边

PDG 边

CFG 边

AST 边

检
测
模
型
训
练

漏
洞
检
测

漏
洞
解
释

无标签代码库

注入点定位

变异算子选择

代码转换

注入点定位

变异算子选择

代码转换

数据增强

注入点定位

变异算子选择

代码转换

数据增强

静
态
程
序
分
析

漏洞数据集

代码特征嵌入

代
码
属
性
图
C
P
G

抽象语法树AST

控制流图CFG

程序依赖图PDG

代码属性图构建

原始代码

变异代码

漏洞代码
图特征编码器

漏洞检测模型

被测代码

静态程序分析 代码属性图构建

代码特征嵌入

特征抽取 非漏洞

漏洞

约束优化求解 事实解释

反事实解释

因果推理

事实解释

反事实解释

因果推理

漏洞解释

监督对比训练

自监督对比训练

混合对比学习

监督对比训练

自监督对比训练

混合对比学习
分
类
器

漏洞检测
模型训练

非漏洞代码

无标签代码库

注入点定位

变异算子选择

代码转换

数据增强

静
态
程
序
分
析

漏洞数据集

代码特征嵌入

代
码
属
性
图
C
P
G

抽象语法树AST

控制流图CFG

程序依赖图PDG

代码属性图构建

原始代码

变异代码

漏洞代码
图特征编码器

漏洞检测模型

被测代码

静态程序分析 代码属性图构建

代码特征嵌入

特征抽取 非漏洞

漏洞

约束优化求解 事实解释

反事实解释

因果推理

漏洞解释

监督对比训练

自监督对比训练

混合对比学习
分
类
器

漏洞检测
模型训练

非漏洞代码

检
测
模
型
训
练

漏
洞
检
测

漏
洞
解
释

无标签代码库

注入点定位

变异算子选择

代码转换

数据增强

静
态
程
序
分
析

漏洞数据集

代码特征嵌入

代
码
属
性
图
C
P
G

抽象语法树AST

控制流图CFG

程序依赖图PDG

代码属性图构建

原始代码

变异代码

漏洞代码
图特征编码器

漏洞检测模型

被测代码

静态程序分析 代码属性图构建

代码特征嵌入

特征抽取 非漏洞

漏洞

约束优化求解 事实解释

反事实解释

因果推理

漏洞解释

监督对比训练

自监督对比训练

混合对比学习
分
类
器

漏洞检测
模型训练

非漏洞代码

Feature Encoder
Code Property Graph

Initialization

Code

Type

Code

Type

Hierarchy-Specific

Feature Extractor

Hierarchy-Specific

Feature Extractor

Hierarchy-Specific

Feature Extractor

⊕

⊕

Classifier

Classifier

𝓛CE

 𝓛Hier
t

t+1

T

Vulnerable Code

Depth-1

Depth-2

From
 C

oarse to Fine

1003

... 11920

... 120129824

From
 C

oarse to Fine

1003

... 11920

... 120129824

Depth-1

Depth-2

From
 C

oarse to Fine

1003

... 11920

... 120129824

 [CWE-119,

CWE-120]

CWE-120

Conv
Conv Pool

Pool
Conv

Conv Pool
Pool

Hierarchy-Specific
Feature Extractor

Conv
Conv Pool

Pool

Hierarchy-Specific
Feature Extractor

Classifier

Feature Encoder
Code Property Graph

Initialization

Code

Type

Hierarchy-Specific

Feature Extractor

Hierarchy-Specific

Feature Extractor

Hierarchy-Specific

Feature Extractor

⊕

⊕

Classifier

Classifier

𝓛CE

 𝓛Hier
t

t+1

T

Vulnerable Code

Depth-1

Depth-2

From
 C

oarse to Fine

1003

... 11920

... 120129824

 [CWE-119,

CWE-120]

CWE-120

Conv
Conv Pool

Pool

Hierarchy-Specific
Feature Extractor

Classifier

1 void foo(unsigned int arr[])
2 {
3 unsigned int data = arr[2];
4 {
5 ++data;
6 unsigned int result = data;
7 }
8 }

void

ReturnType

unsigned int

Param_1[]

ParameterList

Var_1[]

Identifier

unsigned int

ParameterType

unsigned int
Identifier

DeclType

Var_1 =

Param_1[2]

AssignmentExpr

Var_1

Identifier

Param_1

Identifier

++

IncDec

Var_1

Identifier

unsigned int
Identifier

DeclType

Var_2

Identifier

Var_2 = Var_1

AssignmentExpr

Var_1

Identifier

void foo(unsigned

int Param_1[])

FunctionDef

unsigned int Var_1 =

Param_1[2]

IdentifierDeclStatement

++Var_1

ExpressionStatement

unsigned int Var_2 = Var_1

IdentifierDeclStatement

Entry

Exit

2

PrimaryExpr

Param_1 Var_1

PDG edge

CFG edge

AST edge

PDG edge

CFG edge

AST edge

void

ReturnType

unsigned int

Param_1[]

ParameterList

Var_1[]

Identifier

unsigned int

ParameterType

unsigned int
Identifier

DeclType

Var_1 =

Param_1[2]

AssignmentExpr

Var_1

Identifier

Param_1

Identifier

++

IncDec

Var_1

Identifier

unsigned int
Identifier

DeclType

Var_2

Identifier

Var_2 = Var_1

AssignmentExpr

Var_1

Identifier

void foo(unsigned

int Param_1[])

FunctionDef

unsigned int Var_1 =

Param_1[2]

IdentifierDeclStatement

++Var_1

ExpressionStatement

unsigned int Var_2 = Var_1

IdentifierDeclStatement

Entry

Exit

2

PrimaryExpr

Param_1 Var_1

PDG edge

CFG edge

AST edge

Fig. 6. An exemplary code sample (left) and its corresponding CPG (right).

identifiers by replacing formal parameters and local variables
defined by developers with a normalized symbol PARAM_i

and VARIABLE_j, respectively. Then, we use Word2Vec [32]
to encode leaf nodes in AST. Considering some important
structure information may be lost when converting graphs into
low-dimensional vectors with Word2Vec, we use Node2Vec
[33] as an alternative to encode statement nodes in CFG and
PDG. Node2Vec can capture data dependency and control
dependency between statements because it transfers the infor-
mation of two nodes bidirectionally and encodes a node with
the information from its surrounding structures. In addition,
we consider the abstract type of each node (e.g., Identifier,
Variable) since it reflects the code property represented by
each node, making the vulnerability patterns more general. We
encode the abstract type of each node by label encoding, which
transforms text into numerical value. Finally, we concatenate
the node representation Cv of each node v ∈ N with the type
representation Tv as the initial representation as follows:

h(0)
v = Cv||Tv (4)

where || denotes the concatenation operator.

3) Graph Representation Learning: To capture global vul-
nerability semantics for classification, we employ GAT [34], a
state-of-the-art GNN with multi-head attention, to iteratively
propagate and aggregate node information along with different
edges. Formally, given a CPG node v, its node representation

after t-th iteration is updated as:

h(t+1)
v =

1

|R|
∑
r∈R

(
σ

(∑
u∈Nr

α(t)
v,uz

(t)
u

))
(5)

z(t)
u = W (t)

r h(t)
u (6)

where R is the types of edges in CPG, and | · | represents the
size of a set. σ denotes the activation function, which we use
LeakyReLU here. Nr represents the 1-hop neighbors of node
v under the edge r. W r represents the weight matrix under
the edge r. αv,u represents the attention weight between the
node v and its neighbor u under the edge r:

α(t)
v,u =

exp(e
(t)
v,u)∑

p∈Nr

exp(e
(t)
v,p)

(7)

e(t)v,u = σ
(
a⃗r

(t)T
(
z(t)
v ||z(t)

u

))
(8)

where a⃗r
T denotes the transposition of a learnable weight

vector. || denotes the concatenation operation. ev,u can be
regarded as the association degree between node v and its
neighbor node u.

D. Contrastive Learning

To alleviate the labeled data scarcity issue, we propose a
new combinatorial contrastive learning-based training strategy

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 6

to combine the strengths of large-scale unlabeled code corpus
and limited IoT vulnerability dataset. Specifically, for unla-
beled code samples along with their semantically equivalent
variants (positives), we compute self-supervised contrastive
loss to learn better code presentations. Meanwhile, for labeled
IoT vulnerability dataset, we calculate supervised contrastive
loss based on vulnerable code and their patched version.
Below, we elaborate on each component of our contrastive
learning with more technical details.

1) Self-Supervised Contrastive Loss: Specifically, given
a set of N randomly sampled unlabeled code pairs {c̃i},
where c̃2d−1 and c̃2d are the original and augmented
view of {cd}d=1,··· ,N , respectively, in the mini-batch B ≡
{1, · · · , 2N}, we employ the Noise Contrastive Estimate
(NCE) [21] to compute the self-supervised loss Lself

con :

Lself
con =

1

|B|
∑
i∈B

−log
exp(H ′

i ·H ′
j(i)/τ)∑

a∈A(i)

exp(H ′
i ·H ′

a/τ)
(9)

where H ′
i represents the low-dimensional embedding of the

graph-level representation H
(T)
i = {h(T)

v }Vv of an arbitrary
(original or augmented) sample c̃i via a projection head
consisting of a MLP layer with a single hidden layer. j(i) is
the index of the other view originating from the same source.
τ ∈ R+ is the temperature parameter to scale the loss, and
A(i) ≡ B\{i}.

2) Supervised Contrastive Loss: In addition, to effectively
leverage limited IoT vulnerability samples with human an-
notations, we employ an additional Supervised Contrastive
(SupCon) loss term [35] during the training process. The the
use of label information encourages the feature encoder to
closely aligns all samples from the same class in the latent
space to learn more accurate (in terms of samples with the
same label) cluster representations for vulnerable and benign
samples. Formally, the SupCon loss Lsup

con is written as:

Lsup
con =

1

|Bl|
∑
i∈Bl

−1

|Q(i)|
∑

q∈Q(i)

log
exp(H ′

i ·H ′
q/τ)∑

a∈A(i)

exp(H ′
i ·H ′

a/τ)

(10)

where Bl corresponds to the used IoT vulnerability dataset,
and Q(i) ≡ {q ∈ A(i) : ỹq = ỹi} is the set of indices
of all other positives that hold the same label. Particularly,
the patched version of the vulnerable code in Bl can serve
as hard negatives to capture more subtle yet discriminative
vulnerability features. 1/|Q(i)| is the positive normalization
factor which serves to remove bias present in multiple positives
samples and preserve the summation over negatives in the
denominator to increase performance.

Finally, the total loss used to train a robust feature encoder
over the batch is defined as:

Ltotal = (1− λ)Lself
con + λLsup

con (11)

where λ is a weight coefficient to balance the two loss terms.

E. Vulnerability Detection

In the detection phase, given a code snippet, we aim to apply
a well-trained detection model (more specifically, a binary
classifier) to identify potential IoT vulnerabilities. Similar to
the feature extraction phase (Section III-C) in model training,
program semantics reflected in the CPG of source code are
first captured through static analysis. Next, each node in
CPG is embedded into low-dimensional vectors through code
embedding. Then, both unstructured node embeddings and
structured relations in CPGs are feed into the well-trained
feature encoder (i.e., the GAT model trained with Eq. (11))
for feature extraction. Finally, the prediction (i.e., vulnerable
or not) is made by a classifier composed of a one-layer fully
connected layer.

F. Vulnerability Explanation

To derive explanations on why the detection model has
decide on the vulnerability, we follow the most related work
IVDetect [14], which aims to find a sub-graph G′

k, which
covers the key nodes (tokens/statements) and edges (program
dependencies) that are most decisive to the prediction label,
from the graph representation Gk of the detected vulnerable
code ck via GNNExplainer [19]. The main difference lies
in that we aim to seek both faithful (reflecting the decision
mechanism of the to-be-explained detection model) and stable
(explanation results should be consistent with the same input
for different runs) explanations. Hence, we incorporate a
novel deviation-aware loss term LAlign into GNNExplainer to
identify explanatory CPG sub-graphs while preserving their
alignment with original inputs.

Specifically, we first leverage the CPGs {Gk}nk=1 of other
vulnerable code from the dataset to obtain a global view
of the graph representation {

∑
v∈V′

k
hl+1
v,k /|V ′

k|}nk=1, where
hl
v,k denotes embeddings of node v in graph Gk at layer

l, and V ′
k is a set of selected nodes after graph pooling.

Then, a clustering algorithm is applied to divide the latent
representations of samples in the embedding space into X
groups. The representative graph embeddings are assigned as
anchors {hl+1,x}Xx=1 to measure the distance between Gk and
G′
k at l-th layer for alignment:

LAlign(HGk
,HG′

k
) =

∑
l

∑
v∈V′

k

||slv − ŝlv||22 (12)

where slv,x = ||hl+1
v −hl+1,x

v ||2 represents the relative distance
to k-th anchor (i.e., the clustering center of each group).

By comparing relative positions, our deviation-aware align-
ment loss LAlign provides a simple yet effective strategy to
encode the varying importance of each dimension for evaluat-
ing alignments in the embedding distribution manifold. Finally,
in order to generate both faithful and stable explanations, we
incorporate the deviation-aware alignment loss term LAlign

into GNNExplainer (Eq. (3)) as:

min
G

EG′
k∼GH(Ŷ|G = G′

k) + η · LAlign (13)

where η controls the balance between prediction preservation
and embedding alignment.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 7

TABLE II
DESCRIPTIVE STATISTICS OF OUR USED DATASET

Data Source Dataset # Vul # Non-vul

General Software
ReVeal 1,664 16,505
Devign 11,888 14,149
Big-Vul 10,547 168,752

IoT Software

Asterisk 94 17,755
FFmpeg 249 5,552

Httpd 57 3,850
LibPNG 45 577
LibTIFF 123 731
OpenSSL 159 7,068

Pidgin 29 8,626
VLC Player 44 6,115

Xen 671 9,023
Total 1,471 59,297

As a result, the code snippet corresponding to the extracted
sub-graph G′

k is the explanation for the detected vulnerability
sample ck.

IV. EXPERIMENTAL EVALUATION

In this section, we first introduce our research questions,
dataset, baselines, evaluation metrics, and implementation de-
tails. Then, we show results for each research question.

A. Research Questions

In this paper, we aim to answer the following research
questions (RQs):
• RQ1: How effective is EXVUL in IoT vulnerability detec-

tion as compared to other state-of-the-art approaches?
• RQ2: How well does EXVUL perform on explaining the

detection results?
• RQ3: How does combinatorial contrastive learning con-

tribute to the performance of EXVUL?
• RQ4: How does deviation-aware alignment contribute to

the performance of EXVUL?
• RQ5: What is the influence of hyper-parameters on the

performance of EXVUL?

B. Dataset

Given that most DL model-oriented vulnerability datasets
are not tailored for IoT vulnerabilities, following Mei et al.
[36], we adopt a small-scale vulnerability dataset consisting
of 1,471 real-world vulnerable functions crawled from nine
open-source software deployed on IoT devices. For example,
VLCPlayer is a multimedia playback software which is widely
integrated in smart home devices for multimedia file playing.
In addition, we also employ three general software vulnerabil-
ity datasets, including ReVeal [13], Devign [12], and Big-Vul
[37], to train baseline models.

Table II reports the statistics of two datasets. Column
1 reports the data source of each dataset. Column 2 lists

the concrete projects selected to collect vulnerability sam-
ples. Columns 3-4 denote the function-level statistics of each
project, including the number of vulnerable functions (Column
3) and non-vulnerable functions (Column 4). The Reveal
dataset [13] is collected by tracking the history vulnerability
fixes in two popular open-source projects: Linux Debian
Kernel and Chromium. In total, ReVeal dataset includes 18,169
functions, in which 9.9% of them are vulnerable (1,664
vulnerable functions). The Devign dataset [12] contains a set
of security issue-related commits from Linux Kernel, QEMU,
Wireshark, and FFmpeg projects. It includes 26,037 functions,
in which 45% of them are vulnerable (11,888 vulnerable
functions). The Big-Vul [37] dataset is collected from over
300 C/C++ GitHub projects. It covers approximately 10k vul-
nerable functions and 177k non-vulnerable functions involved
in vulnerability reports from 2002 to 2019. In total, there are
1,471 vulnerable functions along with 59,279 non-vulnerable
ones in IoT software.

C. Baselines

To demonstrate the effectiveness of EXVUL on vulnerabil-
ity detection, we adopt four state-of-the-art DL-based binary
vulnerability detectors:
• VulDeePecker [4] extracts program slices based on data-

flows between statements and leverages BLSTM to detect
buffer error vulnerabilities (CWE-119) and resource man-
agement error vulnerabilities (CWE-399).

• SySeVR [5] improves VulDeePecker by performing forward
and backward program slicing on PDG to extract control-
and data-flow-related code snippets as features and adopts
several RNN-based models for training.

• Devign [12] combines multiple code representations (e.g.,
AST, CFG) to model programs at the function-level, and
adopts GGNN [38] to learn comprehensive vulnerability
semantics for classification.

• ReVeal [13] proposes to leverage CPG and GGNN to
automatically learn the graph properties of source code.
Compared to traditional rule-based analysis tools [8], [9],

[10], these approaches have shown promising results in scal-
ability and effectiveness because they can automatically learn
implicit vulnerability features without any prior knowledge
[39].

To investigate the effectiveness of EXVUL on vulnerability
explanation, we employ three recent GNN-specific explanation
approaches as baselines:
• GNNExplainer [19] is one of the most popular explanation

approaches and has been integrated into the state-of-the-art
vulnerability explainer IVDetect to simplify the detected
vulnerable code to a minimal program dependence sub-
graph composed of a set of crucial statements along with
program dependencies while retaining the initial model
prediction as explanations. Its key idea lies in accomplishing
a maximum mutual information optimization task, which
leverages edge and feature masks to select important struc-
tures and features.

• PGExplainer [28] enables simultaneous explanation of
multiple instances, whereas GNNExplainer is developed for

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 8

individual graph instance. It trains a parameterized mask
predictor (so-called explanation network) on a universal
embedding of graph edges to predict edge masks.

• GNN-LRP [40] leverages a higher-order Taylor decompo-
sition of model prediction to decompose the scores into the
importance of different walks. The relevance per walk is
computed using a back-propagation similar to LRP for each
node in the walk. The final output of GNN-LRP is the set
of walks associated with the prediction.

D. Evaluation Metrics

We used the following evaluation metrics to measure the
performance of EXVUL on vulnerability detection:
• Accuracy (Acc) evaluates the performance that how many

instances can be correctly labeled. It is calculated as: Acc =
TP+TN

TP+FP+TN+FN .
• Precision (Pre) is the fraction of true vulnerabilities among

the detected ones. It is defined as: Pre = TP
TP+FP .

• Recall (Rec) measures how many vulnerabilities can be
correctly detected. It is calculated as: Rec = TP

TP+FN .
• F1-score (F1) is the harmonic mean of Recall and Preci-

sion, and can be calculated as: F1 = 2 ∗ Rec∗Pre
Rec+Pre .

To quantify the quality of generated explanations, we
use three fine-grained Vulnerability-Triggering Paths (VTP)
metrics [41] to evaluate the faithfulness of explanations, and
the Stability metrics [42] to evaluate the consistency of ex-
planations, respectively. They are formally defined as follows:
• Mean Statement Precision (MSP): MSP = 1

N

∑N
i=1 SPi,

where SPi = |Se ∩ Sp|/|Se| represents the proportion of
contextual statements truly related to the detected vulnera-
bility sample i ∈ N in the explanations. Here, Se denotes
the set of explanatory statements provided by explainers,
while Sp denotes the set of labeled vulnerability-contexts
(ground truth) in the dataset. | · | represents the size of a set.

• Mean Statement Recall (MSR): MSR = 1
N

∑N
i=1 SRi,

where SRi = |Se ∩ Sp|/|Sp| denotes that how many
contextual statements in the triggering path of the detected
vulnerability sample i can be covered in explanations.

• Mean Intersection over Union (MIoU): MIoU =
1
N

∑N
i=1 IoUi, where IoUi = |Se ∩ Sp|/|Se ∪ Sp| reflects

the degree of overlap between the explanatory statements
and the contextual statements on the VTP.

• Stability (Stb): Stbi = 1
C2

M

∑C2
M

j=1 IoUj , where IoUj =

|Sm ∩ Sn|/|Sm ∪ Sn| reflects the degree of overlap be-
tween sample i’s explanatory statements in the run m and
n ∈ [1,M]. C2

M is the combination operation, i.e., the total
combinations when comparing the results of any two runs.
We calculated the arithmetic mean for evaluation in our
experiments.

E. Implementation Details

Our experiments were performed on a computer with an
Nvidia Graphics Tesla T4 GPU, installed with Ubuntu 18.04,
CUDA 10.1. We implemented our approach in Python using
PyTorch2. We generated CPGs and semantically equivalent

2https://pytorch.org/

variants of the code snippets based on the ASTs parsed by
tree-sitter3. The dimension of the vector representation of
each node/token in CPG is set to 128 and the dropout is set
to 0.1. The other hyper-parameters of our approach are tuned
through grid search. For model training, we employed Code-
SearchNet [43], a large-scale unlabeled code corpus which
contains 2.1M bimodal comment-function pairs and 6.4M uni-
modal functions across six programming languages, to perform
self-supervised contrastive learning, and conducted supervised
contrastive learning on our IoT vulnerability dataset, in which
vulnerable samples are regarded as positives, and patches
(benign/non-vulnerable samples) are negatives (the patched
version of the anchor sample is hard negative).

F. RQ1: Effectiveness on Vulnerability Detection

Objective. Benefiting from the powerful representation capa-
bility of deep neural networks, many DL-based vulnerabil-
ity detection approaches have been proposed. However, as
manually constructing such a large-scale dataset with human
annotations for IoT vulnerabilities is non-trivial and time-
consuming, it’s unrealistic to train a well-performing IoT
vulnerability detection model. In this paper, we propose a
novel approach EXVUL, which combines the strengths of
large-scale unlabeled code corpus and limited labeled data
to train an effective IoT vulnerability detection model. The
experiments are conducted to investigate whether EXVUL
outperforms state-of-the-art DL-based approaches, which are
pre-trained on general software vulnerability dataset, on the
IoT vulnerability detection task.
Experimental Design. We considered four state-of-the-art
baselines: VulDeePecker, SySeVR, Devign, and ReVeal. As
mentioned earlier, since the above four DL-based binary
vulnerability detectors are not designed for IoT vulnerabilities,
we respectively trained them based on three general software
vulnerability datasets (randomly split into the ratio of 8:2 for
training and validation), and applied transfer learning to fine-
tune these pre-trained models on part of our IoT vulnerability
samples to port it for IoT vulnerability detection. For EXVUL,
80% of IoT code samples are treated as training data in
supervised contrastive learning, 10% of samples are treated as
validation data (also used for fine-tuning pre-trained baseline
models), and the left 10% of samples are treated as testing
data. We also keep the distribution as same as the original
ones in training, validating, and testing data. Besides, in
order to comprehensively compare the performance among
baselines and EXVUL, we considered four widely-used binary
classification metrics (i.e., Accuracy, Precision, Recall, and F1-
score) and conducted experiments on the IoT dataset.
Results. Fig. 7 shows the performance comparison of EXVUL
with respect to four state-of-the-art DL-based approaches (pre-
trained on three datasets) in terms of the aforementioned
evaluation metrics. Overall, EXVUL generally outperforms
all of the baselines, achieving 0.89 on Accuracy, 0.64 on
Precision, 0.69 on Recall, and 0.67 on F1.

In particular, we find that the average improvements of
EXVUL over each metric are significant, ranging from 33.44%

3https://tree-sitter.github.io/tree-sitter/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 9

A c c u r a c y P r e c i s i o n R e c a l l F 1 - s c o r e0
1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0

1 0 0
De

tec
tio

n P
erf

orm
anc

e (
%)

 V u l D e e P e c k e r S y S e V R D e v i g n R e V e a l E X V u l

(a) Comparison with baselines pre-trained on the Devign dataset.

A c c u r a c y P r e c i s i o n R e c a l l F 1 - s c o r e0
1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0

1 0 0

De
tec

tio
n P

erf
orm

anc
e (

%)

 V u l D e e P e c k e r S y S e V R D e v i g n R e V e a l E X V u l

(b) Comparison with baselines pre-trained on the ReVeal dataset.

A c c u r a c y P r e c i s i o n R e c a l l F 1 - s c o r e0
1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0

1 0 0

De
tec

tio
n P

erf
orm

anc
e (

%)

 V u l D e e P e c k e r S y S e V R D e v i g n R e V e a l E X V u l

(c) Comparison with baselines pre-trained on the Big-Vul dataset.

Fig. 7. Performance of IoT vulnerability detection regarding EXVUL and
baselines.

to 72.91% on Accuracy, from 28.29% to 63.12% on Precision,
from 10.09% to 137.06% on Recall, and from 19.52% to
98.78% on F1, respectively. These results verify the effec-
tiveness of our combinatorial contrastive learning strategy in
detecting IoT vulnerabilities without sufficient labeled data for
model training. The root cause for this performance gap is
that directly migrating a DL model pre-trained on a general
vulnerability dataset to IoT vulnerability detection via transfer
learning ignores the distribution disparity between the source
domain (i.e., general vulnerabilities) and target (IoT vulner-
abilities) in feature space, confusing the classifier seriously.
By contrast, benefiting from the combination of large-scale
unlabeled code corpus and limited labeled vulnerability data,
EXVUL learns to capture discriminative semantic features
of source code and leverages these features to distinguish
vulnerable code from benign ones.

Answer to RQ1: EXVUL outperforms the state-of-the-
art baselines on IoT vulnerability detection. Particularly, it
achieves overwhelming results at both Accuracy and F1-
score, which indicate that EXVUL equipped with self-
supervised contrastive learning as well as supervised con-
trastive learning has a stronger ability to learn the semantics
of IoT vulnerabilities.

G. RQ2: Explainability on Vulnerability Detection

Objective. Though many novel approaches have been pro-
posed and indeed achieved remarkable performance, they
fall short in the capability to explain why a given code is
predicted as vulnerable. The form of an explanation can be
diverse, such as vulnerability types [44], root cause [45],
similar vulnerability reports [46], and so on. In this paper,
we follow the related work IVDetect to formalize the vulner-
ability explanation as a fine-grained classification task, i.e.,
locating vulnerability-related code snippets. The experiments
are conducted to investigate whether EXVUL outperforms
state-of-the-art vulnerability explanation approaches in terms
of faithfulness and stability.
Experimental Design. We considered the three state-of-the-
art baselines: IVDetect, P2IM, and mVulPreter. To gain the
ground truths of the vulnerability samples in the testing set,
we adopted a simple yet effective labeling strategy [47],
i.e., comparing changed statements between each vulnerable
function and its corresponding fixed version in the corre-
sponding vulnerable function according to diff files. If a
statement was deleted or altered (i.e., starting with ”-” in diff
files), it would be labeled as vulnerable, and non-vulnerable
otherwise. In order to avoid introducing artificial deviation,
two postgraduates and one Ph.D participated in this labeling
process. If two postgraduates disagreed on the label of the
same sample, the sample would be forwarded to the Ph.D
evaluator for further investigation. In order to comprehensively
compare the performance among baselines and EXVUL, we
considered three faithfulness-specific metrics (i.e., MSP, MSR,
and MIoU). We reported results averaged across 100 IoT
vulnerabilities, which were randomly sampled from our IoT
dataset (independent from samples used for training EXVUL),
correctly detected by baselines and EXVUL. Due to the
randomness in initialization, the explanation for the same
instance given by an explainer could be different for different
runs. Thus, in addition to comparing to ground truths, we
also evaluate the obtained explanations in terms of stability.
For the same vulnerability sample, we ran each explainer five
times and reported the average values of the stability metric.
A higher stability score indicates more consistent explanations
at different runs.
Results. Table III shows the performance comparison of our
approach with respect to state-of-the-art vulnerability explain-
ers. As can be seen, EXVUL substantially outperforms the
best-performing approach PGExplainer by 22.97% in MSP,
49.55% in MSR, and 48.40% in MIoU, respectively. The main
reasons leading to this result are two folds. On the one hand,
Owing to our combinatorial contrastive learning, potential
vulnerable behaviour of programs are captured by EXVUL,

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 10

TABLE III
EVALUATION RESULTS ON VULNERABILITY EXPLANATION IN

PERCENTAGE COMPARED WITH BASELINES

Approach Faithfulness Consistency
MSP MSR MIoU Stb

GNNExplainer 25.91 27.14 23.77 8.07
PGExplainer 36.48 33.56 28.12 16.22
Graph-LRP 33.61 38.02 26.94 13.67

EXVUL 44.86 50.19 41.73 35.64

leading to more reliable prediction labels (as discussed in
RQ1) for explanation generation. On the other hand, by in-
corporating our deviation-aware strategy into GNNExplainer,
EXVUL can help to identify more important substructures
used for predictions, hence yielding the best explanation
performances on all metrics (especially MSR).

The consistency of the explanations generated by each
explanation approach is also shown in Table III. Unfortunately,
the stability scores of all explanation approaches are below
20%. Among them, the consistency of the best-performing
explainer PGExplainer is only 16.22%, indicating that for
the same input, the explanations generated by each explainer
vary greatly at different runs and fail to meet the requirement
of trustworthiness. The above results show that the existing
explanation approaches suffer from significant variability in
the explanation of the same vulnerability. By contrast, we
can find that our approach significantly outperforms the state-
of-the-art explainers from 119.73% to 341.64% in terms of
stability, demonstrating the introduction of our deviation-aware
alignment strategy can significantly improve the consistency.

Answer to RQ2: The faithfulness and consistency of ex-
isting explanation approaches are not satisfactory, making it
difficult for security analysts to establish trust on the model
decision. By contrast, our proposed EXVUL significantly
outperforms the state-of-the-art explainers in terms of MSP,
MSR, MIoU, and Stb, demonstrating the practical value of
our approach in providing faithful and stable explanations.

H. RQ3: Impacts of Combinatorial Contrastive Learning

Objective. Different from traditional supervised learning-
based vulnerability detection framework, which trains a well-
performing model on the large-scale labeled dataset, we pro-
pose a new combinatorial contrastive learning-based training
strategy to combine the strengths of large-scale unlabeled code
corpus and limited IoT vulnerability dataset. Therefore, it
is important to conduct a study on how the combinatorial
contrastive learning affect the learning of IoT vulnerability
semantics.
Experimental Design. We compared the performance of four
versions of EXVUL: with only self-supervised contrastive
learning (denoted as EXVULself), with only supervised con-
trastive learning (denoted as EXVULsup), without contrastive
learning (equivalent to tradition supervised learning with
cross-entropy, and denoted as EXVULCE , and with combi-

TABLE IV
EVALUATION RESULTS ON VULNERABILITY DETECTION IN PERCENTAGE

COMPARED WITH VARIANTS

Approach Accuracy Precision Recall F1-score

EXVULself 0.82 0.59 0.47 0.52
EXVULsup 0.75 0.57 0.61 0.59
EXVULCE 0.86 0.33 0.26 0.29

EXVUL 0.89 0.64 0.69 0.67

natorial contrastive learning (the default EXVUL). The exper-
imental dataset is set the same as the experiment of RQ1 (i. e.,
80% for training, 10% for validation, and 10% for testing). We
also consider the four performance measures(i. e., Accuracy,
Precision, Recall, and F1-score) for comprehensively studying
the impact of different training strategies.
Results. As shown in Table IV, compared with EXVULself

and EXVULsup, EXVUL improves the Accuracy by 8.53%
and 18.67%, respectively, and improves the F1-score by
28.85% and 13.56%, respectively. The reason for the improve-
ments is that, benefiting from the combination of large-scale
unlabeled code corpus and limited labeled vulnerability data,
EXVUL learns to capture discriminative semantic features
of source code and leverages these features to distinguish
vulnerable code from benign ones. In addition, we can find that
both EXVULself and EXVULsup outperform EXVULCE in
terms of all metrics. The potential cause for this performance
gap may be that suffering from the severe imbalanced sample
distribution (only 2.48% samples in our IoT dataset are vulner-
able), the classifier fails to identify vulnerable samples from
plenty of non-vulnerable samples. Furthermore, EXVULsup

slightly outperforms EXVULself by 29.79% in terms of
Recall. The results indicate that by performing supervised
contrastive learning on the labeled vulnerability dataset at the
same time as model training, the detection model can effec-
tively capture the vulnerability semantics for classification.

Answer to RQ3: Self-supervised and supervised contrastive
learning present their own advantages in learning program
semantics, and combining them together can produce the
best improvements on IoT vulnerability detection.

I. RQ4: Impacts of Deviation-Aware Alignment

Objective. As mentioned in RQ2, the reason why existing
explanation approaches are unreliable is that, due to the
randomness in initialization of the explainer, the explanation
for the same instance given by an explainer could be different
for different runs, which violates the stability of explanations.
Therefore, we want to conduct a deeper experiment on how
our proposed deviation-aware alignment strategy impacts the
performance of EXVUL on vulnerability explanation.
Experimental Design. Similar to RQ2, we still adopted three
aforementioned GNN-based explanation approaches (GNNEx-
plainer, PGExplainer, and Graph-LRP) as baselines. For each
approach, we created a variant by incorporate our deviation-
aware alignment loss term into its optimization (as we did in

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 11

2 4 6 8 1 0

1 0

2 0

3 0

4 0

5 0

6 0
 G N N E x p l a i n e r
 P G E x p l a i n e r
 G r a p h - L R P
 E X V u l (G N N E x p l a i n e r)
 E X V u l (P G E x p l a i n e r)
 E X V u l (G r a p h - L R P)

R u n s

Stb
 (%

)

Fig. 8. The varying performance of each approach (with and without our
deviation-aware alignment strategy) in terms of Stability.

Eq. (13)). We empirically ran each approach ten times on 100
sampled IoT vulnerabilities used in RQ2, and calculated the
Stb metric after each run. Although the value of Stb may
benefit from more runs or randomness of graph sampling,
comparison between different execution rounds is beyond the
scope of this research and we leave that for future research.
Results. The evaluation results of each approach (with and
without our deviation-aware alignment strategy) are illustrated
in Fig. 8. According to the results, we find that it can be
seen that the overall stability increases slowly with increasing
runs. It is reasonable since the more rounds the explainer
runs, the more likely the explanations will overlap. In addi-
tion, the stability of all explanation approaches go up with
the incorporation with our deviation-aware alignment, which
validates effectiveness of our proposal in obtaining consistent
explanations.

Answer to RQ4: The overall stability increases slowly with
increasing runs. With the incorporation with our deviation-
aware alignment, the stability of each approach can be
significantly improved.

J. RQ5: Influences of Hyper-parameters on EXVUL

Objective. In our approach, two key hyper-parameters λ
and η affects the effectiveness of vulnerability detection and
explanation, respectively. The former balances the weights
between feature representations learned in self-supervised
and supervised manner, the latter makes a trade-off between
faithfulness and stability of generated explanations. Therefore
,we vary the hyper-parameters λ and η to explore EXVUL’s
sensitivity towards both two values.
Experimental Design. To keep simplicity, all other configura-
tions were kept consistent with RQ1 and RQ2, including data
split and metric computation. λ was varied from 0 to 1 with
an internal of 0.1, while η was varied at scale [1e-3, 1e-2,
1e-1, 1, 10, 1e2, 1e3].
Results. The evaluation results are shown in Fig. 9. In partic-
ular, for vulnerability detection, we can observe from Fig .9a
that, different weights of self-supervised and supervised loss in
our combinatorial contrastive learning has varying impart on
EXVUL’s performance. all the metrics of EXVUL go up with
the increasing of the weight of supervised contrastive part,

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0

5 0

6 0

7 0

8 0

9 0

 A c c u r a c y
 R e c a l l
 P r e c i s i o n
 F 1 - s c o r e

�

(a) Detection performance under dif-
ferent weights of supervised loss.

1 0 - 3 1 0 - 2 1 0 - 1 1 0 0 1 0 1 1 0 2 1 0 3
2 0

3 0

4 0

5 0
 M S P
 M S R
 M I o U

�

(b) Explanation performance under
different weights of alignment loss.

Fig. 9. Sensitivity of EXVUL towards different hyper-parameters.

and reach the optimal performance (except Precision) when λ
equals 0.6. After that, each metric drop to different degrees.
The results indicate that the use of (partial) labeled samples
is benefit to the performance of IoT vulnerability detection.

In addition, for vulnerability explanation, we can find from
Fig. 9b that, higher weights of embedding alignment loss bring
a noticeable improvement in MSP, MSR, and MIoU, which
shows that our deviation-aware alignment strategy is helpful
for generating both faithful and stable explanations. However,
we also observe that blindly increasing the weight (larger than
10) is not always beneficial, and even result in a performance
drop (e.g., MSP and MIoU).

Answer to RQ5: Different settings of hyper-parameters can
influence the performance of EXVUL in vulnerability detec-
tion. Our default hyper-parameter settings achieve optimal
results.

V. THREATS AND LIMITATIONS

The first threat to validity comes from the application
scenario of our approach. Since our approach is designed for
code-centric vulnerability detection and evaluated on a C/C++
dataset, it cannot be used to detected vulnerabilities in IoT ap-
plications with only binaries or written in other programming
languages. However, benefiting from the language-agnostic
nature of CPG, EXVUL can be easily extended to these sce-
narios. In addition, different from dynamic approaches (e.g.,
Fuzzing [48], [49]) which are able to detect vulnerabilities
in real-time, our approach is statically constructed (i.e., off-
line training) and work during code review phase (i.e., on-
line detection). Thus, dynamic approaches can serve as a
supplement to our approach to construct a more effective
detection system throughout the application’s life cycle.

The second threat to validity is the computational effi-
ciency of our proposed approach. We employed CPG as a
model-understandable intermediate representation to extract
vulnerability features at the function-level. Given that the
function in a real-world project is commonly large (maybe
over 100 lines), graph construction is more complex and time-
consuming compared to other code representations such as
sequence and syntax tree. In the future, we try to explore
a more effective and simpler code representation to further
improve our approach.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 12

VI. RELATED WORK

A. DL-based Vulnerability Detection

The major breakthroughs in Deep Learning (DL) models
along with the ever-increasing public datasets has opened up
new opportunities to develop effective vulnerability detection
techniques without the need of hand-crafted vulnerability
patterns/rules. Prior works focus on representing source code
as sequences and use LSTM-like models to learn the syntactic
and semantic information of vulnerabilities [4], [5]. Li et al. [4]
proposed VulDeePecker, a slice-level vulnerability detection
approach which represents source code as sequences and
uses RNN (e.g., LSTM and BGRU) to learn the syntactic
and semantic information of vulnerabilities. Recently, a large
number of works [12], [13], [11], [50] turn to leveraging GNNs
to extract rich and well-defined semantics of the program
structure from graph representations for downstream vulnera-
bility detection tasks. For example, Zhou et al. [12] proposed
Devign, which combines multiple code representations to
model vulnerability features and adopts GGNN to learn rich
code semantics from structured graph representations, to detect
vulnerable functions.

Despite their effectiveness, the function-level or slice-level
detection results are still coarse-grained. To alleviate heavy
manual review, MVD [47], [51] and LineVD [52] formalizes
vulnerability detection as a fine-grained graph node classifica-
tion problem to identify suspicious vulnerable statements.

In contrast to these studies constructing an effective de-
tection model based on large-scale vulnerability data with
human annotations, we explore the potential of training a
well-performing DL model with limited labeled data for IoT
vulnerability detection.

B. Explainability on DL-based Vulnerability Detection

While DL-based code models are remarkably effective in
a variety of tasks, one growing concern about their adoption
is explainability. The requirement for explainability is more
urgent in vulnerability detection because it is hard to establish
trust on the system decision from simple binary (vulnerable
or benign) results without credible evidence. IVDetect [14]
built an additional model based on binary detection results to
derive crucial statements that are most relevant to the detected
vulnerability as explanations. LineVul [53] leverages the self-
attention mechanism inside the Transformer architecture to
locate vulnerable statements for explanation. Chakraborty et
al. [13] computed the contribution of each code token towards
the prediction. mVulPreter [54] combines the attention weight
with the vulnerability probability outputted by the multi-
granularity detector to compute the importance score for each
code slice. In addition, a few efforts simplified the instance
to be explained to a minimal set of statements that still
preserves the initial model prediction. For example, P2IM [55]
borrows Delta Debugging [56] to reduce a program sample to
a minimal snippet which a model needs to arrive at and stick
to its original vulnerable prediction to uncover the model’s
detection logic.

The main difference between our approach and the above
vulnerability explanation approaches is that existing ap-

proaches focus only on how to improve the explainability
of DL-based vulnerability detection models, ignoring special
concerns in security domains. By contrast, EXVUL proposes
a deviation-aware strategy, which aligns the original code
graph with its explanatory substructure in the latent space, and
incorporates it into existing explanation framework to obtain
more faithful and stable explanations.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we propose EXVUL, a novel DL-based
approach for effective and explainable IoT vulnerability clas-
sification. The key insight of EXVUL is that combining the
strengths of large-scale unlabeled code corpus and limited
labeled data can facilitate training an effective IoT vulnera-
bility detection model, and both faithful and stable explana-
tions can help security practitioners understand the detected
vulnerabilities. The experimental results show that EXVUL
significantly outperforms the state-of-the-art baselines in terms
of all metrics. In the near future, we plan to automatically
construct a large-scale IoT vulnerability dataset to explore
the generalizability of our approach. In addition, we aim to
work with our industry partners to deploy EXVUL in their
proprietary security systems to test its effectiveness in practice.

REFERENCES

[1] State of IoT – Spring 2023, 2023, https://iot-analytics.com/product/
state-of-iot-spring-2023/.

[2] Internet of Things (IoT) Security: Challenges and Best Practices, 2023,
https://www.apriorit.com/white-papers/513-iot-security.

[3] L. Aversano, M. L. Bernardi, M. Cimitile, and R. Pecori, “A systematic
review on deep learning approaches for iot security,” Comput. Sci. Rev.,
vol. 40, p. 100389, 2021.

[4] Z. Li, D. Zou, S. Xu, X. Ou, H. Jin, S. Wang, Z. Deng, and Y. Zhong,
“VulDeePecker: A deep learning-based system for vulnerability detec-
tion,” in Proceedings of the 25th Annual Network and Distributed System
Security Symposium (NDSS). The Internet Society, 2018.

[5] Z. Li, D. Zou, S. Xu, H. Jin, Y. Zhu, and Z. Chen, “Sysevr: A framework
for using deep learning to detect software vulnerabilities,” IEEE Trans.
Dependable Secur. Comput., vol. 19, no. 4, pp. 2244–2258, 2022.

[6] H. K. Dam, T. Tran, T. Pham, S. W. Ng, J. Grundy, and A. Ghose, “Au-
tomatic feature learning for predicting vulnerable software components,”
IEEE Trans. Software Eng., vol. 47, no. 1, pp. 67–85, 2021.

[7] S. Cao, X. Sun, L. Bo, Y. Wei, and B. Li, “BGNN4VD: Construct-
ing bidirectional graph neural-network for vulnerability detection,” Inf.
Softw. Technol., vol. 136, p. 106576, 2021.

[8] Flawfinder, 2023, http://www.dwheeler.com/FlawFinder.
[9] Checkmarx, 2023, https://www.checkmarx.com/.

[10] Infer, 2023, https://fbinfer.com/.
[11] H. Wang, G. Ye, Z. Tang, S. H. Tan, S. Huang, D. Fang, Y. Feng, L. Bian,

and Z. Wang, “Combining graph-based learning with automated data
collection for code vulnerability detection,” IEEE Trans. Inf. Forensics
Secur., vol. 16, pp. 1943–1958, 2021.

[12] Y. Zhou, S. Liu, J. K. Siow, X. Du, and Y. Liu, “Devign: Effective vulner-
ability identification by learning comprehensive program semantics via
graph neural networks,” in Proceedings of the 33rd Annual Conference
on Neural Information Processing Systems (NeurIPS), 2019, pp. 10 197–
10 207.

[13] S. Chakraborty, R. Krishna, Y. Ding, and B. Ray, “Deep learning based
vulnerability detection: Are we there yet?” IEEE Trans. Software Eng.,
vol. 48, no. 9, pp. 3280 – 3296, 2022.

[14] Y. Li, S. Wang, and T. N. Nguyen, “Vulnerability detection with fine-
grained interpretations,” in Proceeding of the 29th ACM Joint European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering (ESEC/FSE). ACM, 2021, pp. 292–303.

[15] R. Croft, M. A. Babar, and M. M. Kholoosi, “Data quality for software
vulnerability datasets,” in Proceedings of the 45th IEEE/ACM Interna-
tional Conference on Software Engineering (ICSE). IEEE, 2023, pp.
121–133.

https://iot-analytics.com/product/state-of-iot-spring-2023/
https://iot-analytics.com/product/state-of-iot-spring-2023/
https://www.apriorit.com/white-papers/513-iot-security
http://www.dwheeler.com/FlawFinder
https://www.checkmarx.com/
https://fbinfer.com/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 13

[16] B. Steenhoek, M. M. Rahman, R. Jiles, and W. Le, “An empirical study
of deep learning models for vulnerability detection,” in Proceedings
of the 45th International Conference on Software Engineering (ICSE).
IEEE/ACM, 2018.

[17] H. K. Dam, T. Tran, and A. Ghose, “Explainable software analytics,”
in Proceedings of the 40th International Conference on Software Engi-
neering: New Ideas and Emerging Results (ICSE-NIER). ACM, 2018,
pp. 53–56.

[18] S. Cao, X. Sun, R. Widyasari, D. Lo, X. Wu, L. Bo, J. Zhang,
B. Li, W. Liu, D. Wu, and Y. Chen, “A systematic literature review
on explainability for machine/deep learning-based software engineering
research,” arXiv preprint arXiv:2401.14617, 2024.

[19] Z. Ying, D. Bourgeois, J. You, M. Zitnik, and J. Leskovec, “Gn-
nexplainer: Generating explanations for graph neural networks,” in
Proceedings of the 33rd Annual Conference on Neural Information
Processing Systems (NeurIPS), 2019, pp. 9240–9251.

[20] Y. Hu, S. Wang, W. Li, J. Peng, Y. Wu, D. Zou, and H. Jin, “Interpreters
for gnn-based vulnerability detection: Are we there yet?” in Proceedings
of the 32nd ACM SIGSOFT International Symposium on Software
Testing and Analysis (ISSTA). ACM, 2023, pp. 1407–1419.

[21] T. Chen, S. Kornblith, M. Norouzi, and G. E. Hinton, “A simple frame-
work for contrastive learning of visual representations,” in Proceedings
of the 37th International Conference on Machine Learning (ICML), vol.
119, 2020, pp. 1597–1607.

[22] N. Lin, Y. Fu, X. Lin, D. Zhou, A. Yang, and S. Jiang, “CL-XABSA:
contrastive learning for cross-lingual aspect-based sentiment analysis,”
IEEE ACM Trans. Audio Speech Lang. Process., vol. 31, pp. 2935–2946,
2023.

[23] P. Jain, A. Jain, T. Zhang, P. Abbeel, J. Gonzalez, and I. Stoica,
“Contrastive code representation learning,” in Proceedings of the 26th
Conference on Empirical Methods in Natural Language Processing
(EMNLP). Association for Computational Linguistics, 2021, pp. 5954–
5971.

[24] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, “A
comprehensive survey on graph neural networks,” IEEE Trans. Neural
Networks Learn. Syst., vol. 32, no. 1, pp. 4–24, 2021.

[25] A. Fout, J. Byrd, B. Shariat, and A. Ben-Hur, “Protein interface
prediction using graph convolutional networks,” in Proceedings of the
31st Annual Conference on Neural Information Processing Systems
(NeurIPS), 2017, pp. 6530–6539.

[26] X. Shi, B. Li, L. Chen, and C. Yang, “Bi-neighborhood graph neural
network for cross-lingual entity alignment,” Knowl. Based Syst., vol.
277, p. 110841, 2023.

[27] J. Cai, B. Li, J. Zhang, and X. Sun, “Ponzi scheme detection in smart
contract via transaction semantic representation learning,” IEEE Trans.
Reliab., pp. 1–15, 2023.

[28] D. Luo, W. Cheng, D. Xu, W. Yu, B. Zong, H. Chen, and X. Zhang,
“Parameterized explainer for graph neural network,” in Proceedings of
the 34th Annual Conference on Neural Information Processing Systems
(NeurIPS), 2020.

[29] S. Chakraborty, T. Ahmed, Y. Ding, P. T. Devanbu, and B. Ray, “Natgen:
generative pre-training by ”naturalizing” source code,” in Proceedings
of the 30th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (ESEC/FSE).
ACM, 2022, pp. 18–30.

[30] F. Yamaguchi, N. Golde, D. Arp, and K. Rieck, “Modeling and discov-
ering vulnerabilities with code property graphs,” in Proceedings of the
35th IEEE Symposium on Security and Privacy (SP). IEEE Computer
Society, 2014, pp. 590–604.

[31] C. Zhang, B. Liu, Y. Xin, and L. Yao, “CPVD: cross project vulnerability
detection based on graph attention network and domain adaptation,”
IEEE Trans. Software Eng., vol. 49, no. 8, pp. 4152–4168, 2023.

[32] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their composi-
tionality,” in Proceedings of the 27th Annual Conference on Neural
Information Processing Systems (NeurIPS), 2013, pp. 3111–3119.

[33] A. Grover and J. Leskovec, “node2vec: Scalable feature learning for
networks,” in Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD). ACM,
2016, pp. 855–864.

[34] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Liò, and
Y. Bengio, “Graph attention networks,” in Proceedings of the 6th
International Conference on Learning Representations (ICLR), 2018.

[35] P. Khosla, P. Teterwak, C. Wang, A. Sarna, Y. Tian, P. Isola,
A. Maschinot, C. Liu, and D. Krishnan, “Supervised contrastive learn-
ing,” in Proceedings of the 34th Annual Conference on Neural Informa-
tion Processing Systems (NeurIPS), 2020.

[36] H. Mei, G. Lin, D. Fang, and J. Zhang, “Detecting vulnerabilities in iot
software: New hybrid model and comprehensive data analysis,” J. Inf.
Secur. Appl., vol. 74, p. 103467, 2023.

[37] J. Fan, Y. Li, S. Wang, and T. N. Nguyen, “A C/C++ code vulnerability
dataset with code changes and CVE summaries,” in Proceedings of the
17th International Conference on Mining Software Repositories (MSR).
ACM, 2020, pp. 508–512.

[38] Y. Li, D. Tarlow, M. Brockschmidt, and R. S. Zemel, “Gated graph
sequence neural networks,” in Proceedings of the 4th International
Conference on Learning Representations (ICLR), 2016.

[39] Y. Li, Y. Zuo, H. Song, and Z. Lv, “Deep learning in security of internet
of things,” IEEE Internet Things J., vol. 9, no. 22, pp. 22 133–22 146,
2022.

[40] T. Schnake, O. Eberle, J. Lederer, S. Nakajima, K. T. Schütt, K. Müller,
and G. Montavon, “Higher-order explanations of graph neural networks
via relevant walks,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 44,
no. 11, pp. 7581–7596, 2022.

[41] X. Cheng, X. Nie, L. Ningke, H. Wang, Z. Zheng, and Y. Sui, “How
about bug-triggering paths?-understanding and characterizing learning-
based vulnerability detectors,” IEEE Trans. Dependable Secur. Comput.,
2022.

[42] A. Warnecke, D. Arp, C. Wressnegger, and K. Rieck, “Evaluating
explanation methods for deep learning in security,” in Proceedings of
the 5th IEEE European Symposium on Security and Privacy (EuroS&P).
IEEE, 2020, pp. 158–174.

[43] H. Husain, H.-H. Wu, T. Gazit, M. Allamanis, and M. Brockschmidt,
“Codesearchnet challenge: Evaluating the state of semantic code search,”
arXiv preprint arXiv:1909.09436, 2019.

[44] M. Fu, V. Nguyen, C. Tantithamthavorn, T. Le, and D. Phung, “Vulex-
plainer: A transformer-based hierarchical distillation for explaining
vulnerability types,” IEEE Trans. Software Eng., 2023.

[45] J. Sun, Z. Xing, Q. Lu, X. Xu, L. Zhu, T. Hoang, and D. Zhao,
“Silent vulnerable dependency alert prediction with vulnerability key
aspect explanation,” in Proceedings of the 45th IEEE/ACM International
Conference on Software Engineering (ICSE). IEEE, 2023, pp. 970–982.

[46] C. Ni, X. Yin, K. Yang, D. Zhao, Z. Xing, and X. Xia, “Distinguishing
look-alike innocent and vulnerable code by subtle semantic representa-
tion learning and explanation,” in Proceedings of the 31th ACM Joint
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE). ACM, 2023.

[47] S. Cao, X. Sun, L. Bo, R. Wu, B. Li, and C. Tao, “MVD: memory-related
vulnerability detection based on flow-sensitive graph neural networks,”
in Proceedings of the 44th IEEE/ACM International Conference on
Software Engineering (ICSE). ACM, 2022, pp. 1456–1468.

[48] S. Cao, B. He, X. Sun, Y. Ouyang, C. Zhang, X. Wu, T. Su, L. Bo,
B. Li, C. Ma, J. Li, and T. Wei, “Oddfuzz: Discovering java deserial-
ization vulnerabilities via structure-aware directed greybox fuzzing,” in
Proceedings of the 44th IEEE Symposium on Security and Privacy (SP).
IEEE, 2023, pp. 2726–2743.

[49] S. Cao, X. Sun, X. Wu, L. Bo, B. Li, R. Wu, W. Liu, B. He,
Y. Ouyang, and J. Li, “Improving java deserialization gadget chain
mining via overriding-guided object generation,” in Proceedings of
the 45th IEEE/ACM International Conference on Software Engineering
(ICSE). IEEE, 2023, pp. 397–409.

[50] X. Cheng, H. Wang, J. Hua, G. Xu, and Y. Sui, “Deepwukong: Statically
detecting software vulnerabilities using deep graph neural network,”
ACM Trans. Softw. Eng. Methodol., vol. 30, no. 3, pp. 38:1–38:33, 2021.

[51] S. Cao, X. Sun, L. Bo, R. Wu, B. Li, X. Wu, C. Tao, T. Zhang, and
W. Liu, “Learning to detect memory-related vulnerabilities,” ACM Trans.
Softw. Eng. Methodol., vol. 33, no. 2, pp. 43:1–43:35, 2024.

[52] D. Hin, A. Kan, H. Chen, and M. A. Babar, “Linevd: Statement-level
vulnerability detection using graph neural networks,” in Proceedings
of the 19th IEEE/ACM International Conference on Mining Software
Repositories (MSR). IEEE, 2022, pp. 596–607.

[53] M. Fu and C. Tantithamthavorn, “Linevul: A transformer-based line-
level vulnerability prediction,” in Proceedings of the 19th IEEE/ACM In-
ternational Conference on Mining Software Repositories (MSR). IEEE,
2022, pp. 608–620.

[54] D. Zou, Y. Hu, W. Li, Y. Wu, H. Zhao, and H. Jin, “mvulpreter: A multi-
granularity vulnerability detection system with interpretations,” IEEE
Trans. Dependable Secur. Comput., 2022.

[55] S. Suneja, Y. Zheng, Y. Zhuang, J. A. Laredo, and A. Morari, “Probing
model signal-awareness via prediction-preserving input minimization,”
in Proceedings of the 29th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE). ACM, 2021, pp. 945–955.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 14

[56] A. Zeller and R. Hildebrandt, “Simplifying and isolating failure-inducing
input,” IEEE Trans. Software Eng., vol. 28, no. 2, pp. 183–200, 2002.

Sicong Cao received his B.S. degree in software en-
gineering from the Nanjing Institute of Technology,
Nanjing, China, in 2019, and is currently working
toward the Ph.D. degree with the School of Infor-
mation engineering, Yangzhou University, Jiangsu,
China. His research interests include software se-
curity and deep learning. Some of his publications
have been published in the top-tier conferences (e.g.,
ICSE, S&P) and journals (e.g., ACM TOSEM).

Xiaobing Sun received his B.S. degree in computer
science and technology from the Jiangsu University
of Science and Technology, Zhenjiang, China, in
2007, and the Ph.D. degree in computer science
and technology from the School of Computer Sci-
ence & Engineering, Southeast University, Nanjing,
China, in 2012. He is a Professor with the School
of Information Engineering, Yangzhou University,
Yangzhou, China. He has been authorized more than
20 patents, and authored and co-authored more than
80 papers in referred international journals and con-

ferences. His research interests include software maintenance and evolution,
software repository mining, intelligence analysis, etc.

Wei Liu received the B.Sc. and M.Sc. degrees
in computer science from Yangzhou University,
Jiangsu, China, in 2004 and 2007, respectively, and
the Ph.D. degree from the Department of Computer
Science, Nanjing University of Aeronautics and As-
tronautics, Jiangsu, China, in 2010. She is currently
a Professor with the School of Information Engi-
neering, Yangzhou University, Jiangsu, China. Her
research interests include complex network, machine
learning, etc.

Di Wu is a Lecturer at the School of Mathematics,
Physics, and Computing, the University of South-
ern Queensland and a Visiting Fellow at School
of Computer Science, University of Technology
Sydney. Prior to that, he was a Researcher at the
Australian Institute for Machine Learning (AIML)
& School of Computer Science, University of Ade-
laide, Adelaide, Australia. Previous to this, he was an
Associate Research Fellow, Artificial Intelligence at
Deakin Blockchain Innovation Lab, School of Infor-
mation Technology, Deakin University, Melbourne,

Australia, and worked as a Postdoc Fellow at the School of Computer Science,
University of Technology Sydney (UTS), Sydney, Australia. He has more
than 10 years of experience in research & development and academia. He
has substantial industry experience in large project management, software
development, and large system maintenance experience while working on
various projects at China Telecom (Global 500), Shanghai. His research area
focuses on applying AI on edge devices and AI applications. He has published
over 20 papers in refereed books, conferences, and journals. He has served
as a special session chair for IJCNN. He also serves as a reviewer for many
high-quality academic conferences and journals, such as CoRL, PR, TETCI,
and so on.

Jiale Zhang received the Ph.D. degree in com-
puter science and technology the College of Com-
puter Science and Technology, Nanjing University
of Aeronautics and Astronautics, Nanjing, China, in
2021. He is currently an Associate Professor with the
School of Information Engineering, Yangzhou Uni-
versity, Yangzhou, China. He has published over 40
research papers in refereed international conferences
and journals, such as IEEE TII, IEEE IoT-J, COSE,
JSS, IEEE ICC, and IEEE Globecom. His research
interests are mainly federated learning, AI security,

and blockchian security.

Yan Li is currently a Professor in computer science
with the Faculty of Health, Engineering and Sci-
ences, University of Southern Queensland, Australia.
Her research interests are in the areas of signal and
image processing, biomedical engineering, artificial
intelligence, big data analytics, and computer net-
working technologies.

Tom H. Luan received the B. E. degree in electri-
cal and computer engineering from Xi’an Jiaotong
University, Xi’an, Shaanxi, China, in 2004, the M.
Phil. degree in electrical and computer engineering
from The Hong Kong University of Science and
Technology, Hong Kong, in 2007, and the Ph.D.
degree in electrical and computer engineering from
the University of Waterloo, Waterloo, ON, Canada,
in 2012. He is with the School of Cyber Science
and Engineering, Xi’an Jiaotong University. He has
authored or coauthored more than 150 peer-reviewed

papers in journal and conferences. His research interests include content
distribution and media streaming in vehicular ad hoc networks, peer-to-peer
networking, protocol design, performance evaluation of digital network, and
edge computing. Dr. Luan was the recipient of the 2017 IEEE VTS Best Land
Transportation Best Paper Award and the IEEE ICCS 2018 Best Paper Award.

Longxiang Gao (SM17) received his PhD in Com-
puter Science from Deakin University, Australia.
He is currently a Professor in Shandong Computer
Science Center at Qilu University of Technology
(Shandong Academy of Sciences). He was a Se-
nior Lecturer at School of Information Technology,
Deakin University and a post-doctoral research fel-
low at IBM Research & Development, Australia.
His research interests include Fog/Edge computing,
Blockchain, data analysis and privacy protection. Dr.
Gao has over 130 publications, including patent,

monograph, book chapter, journal and conference papers. Some of his
publications have been published in the top venue, such as IEEE TMC,
IEEE TPDS, IEEE IoTJ, IEEE TDSC, IEEE TVT, IEEE TCSS, IEEE TII,
IEEE TNSE, IEEE TWC and ACM Computing Surveys. He has being Chief
Investigator (CI) for more than 20 research projects (the total awarded amount
is over $5 million), from pure research project to contracted industry research.
He is a Senior Member of IEEE.

	Introduction
	Background
	Problem Definition
	Contrastive Learning
	GNN-specific Explanation Framework

	Our approach: EXVul
	Overview
	Data Augmentation
	Feature Extraction
	Graph Construction
	Code Embedding
	Graph Representation Learning

	Contrastive Learning
	Self-Supervised Contrastive Loss
	Supervised Contrastive Loss

	Vulnerability Detection
	Vulnerability Explanation

	Experimental Evaluation
	Research Questions
	Dataset
	Baselines
	Evaluation Metrics
	Implementation Details
	RQ1: Effectiveness on Vulnerability Detection
	RQ2: Explainability on Vulnerability Detection
	RQ3: Impacts of Combinatorial Contrastive Learning
	RQ4: Impacts of Deviation-Aware Alignment
	RQ5: Influences of Hyper-parameters on EXVul

	Threats and Limitations
	Related Work
	DL-based Vulnerability Detection
	Explainability on DL-based Vulnerability Detection

	Conclusions and future work
	References
	Biographies
	Sicong Cao
	Xiaobing Sun
	Wei Liu
	Di Wu
	Jiale Zhang
	Yan Li
	Tom H. Luan
	Longxiang Gao

