MVD: Memory-Related Vulnerability Detection Based on Flow-Sensitive Graph Neural Networks

Sicong Cao¹, Xiaobing Sun¹, Lili Bo¹, Rongxin Wu², Bin Li¹, Chuanqi Tao³

¹Yangzhou University ²Xiamen University ³Nanjing University of Aeronautics and Astronautics

44th International Conference on Software Engineering, ICSE 2022, Pittsburgh, PA, USA

Memory-related vulnerabilities can result in performance degradation and program crash, severely threatening the security of modern software.

Home > Tech > News > 70% of security bugs are memory safety problems: Chrome

70 <u>% of se</u>	curity bugs are	mem	norv safetv	problen	ns:		
Chr cisco	Talos	Software	Vulnerability Information	Reputation Center	Library	Support	lı
Nearly							
	MONDAY, JANUARY 31, 2022						
	Vulnerability Spotlig vulnerabilities in Fo	ght: M oxit PD	emory corrupt F Reader	tion and us	e-aft	er-fre	e

Background

Memory-related vulnerabilities can result in performance degradation and program crash, severely

threatening the security of modern software.

Rank	Rank ID Name		Score	2020 Rank Change
[1]	<u>CWE-787</u>	Out-of-bounds Write	65.93	+1
[2]	<u>CWE-79</u>	Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting')	46.84	-1
[3]	<u>CWE-125</u>	Out-of-bounds Read	24.9	+1
[4]	<u>CWE-20</u>	Improper Input Validation	20.47	-1
[5]	<u>CWE-78</u>	Improper Neutralization of Special Elements used in an OS Command ('OS Command Injection')	19.55	+5
[6]	<u>CWE-89</u>	Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection')	19.54	0
[7]	<u>CWE-416</u>	Use After Free	16.83	+1
[8]	<u>CWE-22</u>	Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal')	14.69	+4
[9]	<u>CWE-352</u>	Cross-Site Request Forgery (CSRF)	14.46	0
[10]	<u>CWE-434</u>	Unrestricted Upload of File with Dangerous Type	8.45	+5
[11]	<u>CWE-306</u>	Missing Authentication for Critical Function	7.93	+13
[12]	<u>CWE-190</u>	Integer Overflow or Wraparound	7.12	-1
[13]	<u>CWE-502</u>	Deserialization of Untrusted Data	6.71	+8
[14]	CWE-287	Improper Authentication	6.58	0
[15]	<u>CWE-476</u>	NULL Pointer Dereference	6.54	-2
[16]	CWE-798	Use of Hard-coded Credentials	6.27	+4
[17]	<u>CWE-119</u>	Improper Restriction of Operations within the Bounds of a Memory Buffer	5.84	-12
[18]	<u>CWE-862</u>	Missing Authorization	5.47	+7
[19]	<u>CWE-276</u>	Incorrect Default Permissions	5.09	+22
[20]	<u>CWE-200</u>	Exposure of Sensitive Information to an Unauthorized Actor	4.74	-13
[21]	<u>CWE-522</u>	Insufficiently Protected Credentials	4.21	-3
[22]	<u>CWE-732</u>	Incorrect Permission Assignment for Critical Resource	4.2	-6
[23]	<u>CWE-611</u>	Improper Restriction of XML External Entity Reference	4.02	-4
[24]	<u>CWE-918</u>	Server-Side Request Forgery (SSRF)	3.78	+3
[25]	<u>CWE-77</u>	Improper Neutralization of Special Elements used in a Command ('Command Injection')	3.58	+6

Static Analysis-Based Approaches

Checkmarx Coverity® sonarQube

Infer

The complex programming logic in realworld software projects gets in the way of the manual identification of the rules

Limitations

A Use-After-Free Vulnerability in Linux Kernel

Our Solutions

- Flow Information Underutilization
 - □ Lack of interprocedural analysis.
 - □ Partial flow information loss in model training. 4

Coarse Granularity

□ Focus on function-level or slice-level detection.

- Fully Utilizing Flow Information
 - ✓ Combining Program Dependence Graph (PDG) with Call Graph (CG).
 - ✓ A novel Flow-Sensitive Graph Neural Networks (FS-GNN).
- Fine Granularity
 - ✓ Formalizing the detection of vulnerable statements as a node classification problem.

Workflow of *MVD*

Workflow of MVD

Workflow of MVD

• Feature Extraction

1 void memory_leak ()
2 {
3 char *str = "This is a string";
4 char *str1;
5 memory_leak_func (strlen(str), &str1);
6 strcpy (str1, str);
7 }
8 void memory_leak_func (int len, char **stringPtr)
9 {
10 char *p = malloc (sizeof(char) * (len + 1));
11 *stringPrt = p;
12 }

• Node Embedding

※ Doc2Vec [1]

- Graph Learning
 - % Graph Embedding

※ Resampling

※ Classification

[1] Quoc V. Le and Tom á s Mikolov. Distributed Representations of Sentences and Documents. ICML 2014.

• Node Embedding

※ Doc2Vec [1]

- Graph Learning
 - % Graph Embedding
 - ※ Resampling
 - ※ Classification

• Node Embedding

X Doc2Vec [1]

- Graph Learning
 - % Graph Embedding
 - ※ Resampling
 - ※ Classification

[1] Quoc V. Le and Tom á s Mikolov. Distributed Representations of Sentences and Documents. ICML 2014.

• Node Embedding

X Doc2Vec [1]

- Graph Learning
 - % Graph Embedding
 - ※ Resampling
 - ※ Classification

[1] Quoc V. Le and Tom á s Mikolov. Distributed Representations of Sentences and Documents. ICML 2014.

Research Questions

- RQ1: How effective is *MVD* compared to deep learning-based vulnerability detectors?
- RQ2: How effective is MVD compared to static analysis-based vulnerability detectors?
- RQ3: How effective is FS-GNN for memory-related vulnerability detection?
- RQ4: How efficient are *MVD* and baselines in terms of their time cost for detecting memory-related vulnerabilities?

DataSet

Project	#Version	#Samples	#Vertices	#Edges
Linux Kernel	2.6-4.20	868	26,917	29,512
FFmpeg	0.5-4.1	73	1,971	2,168
Asterisk	1.4-16.14	18	468	502
Libarchive	2.2-3.4	11	235	269
Libming	0.4.7	7	119	141
LibTIFF	3.8-4.0	24	584	639
Libav	12.3	16	526	573
LibPNG	1.0.x-1.6.x	13	392	447
QEMU	0.9-4.3	121	4,711	5,308
Wireshark	1.2-3.2	57	2,056	2,190
SARD	-	3,145	11,237	13,049
Total	-	4,353	49,216	54,798

• **RQ1**: How effective is *MVD* compared to deep learning-based vulnerability detectors?

Approach	A (%)	P (%)	R (%)	F1 (%)
VulDeePecker	l] <u>60.9</u>	51.4	35.1	41.7
SySeVR[2]	63.4	53.3	62.9	57.7
Devign [3]	68.3	54.8	66.1	59.9
MVD	74.1	61.5	69.4	65.2

Answer to RQ1: In comparison with the popular DLbased approaches, *MVD* achieves better detection performance by fully utilizing flow information via interprocedural analysis and FS-GNN.

(a) A Vulnerability Missed by *Devign*

[1] Z. Li et al. VulDeePecker: A Deep Learning-Based System for Vulnerability Detection. NDSS 2018.
[2] Z. Li et al. SySeVR: A Framework for Using Deep Learning to Detect Software Vulnerabilities. TDSC 2021.
[3] Y. Zhou et al. 2019. Devign: Effective Vulnerability Identification by Learning Comprehensive Program Semantics via Graph Neural Networks. NeurIPS 2019.

• RQ2: How effective is *MVD* compared to static analysis-based vulnerability detectors?

Approach	A (%)	P (%)	R (%)	F1 (%)
PCA [1]	65.2	48.9	61.1	54.3
Saber [2]	64.4	47.6	59.2	52.8
Flawfinder	61.1	18.2	23.5	20.5
RATS	56.3	7.9	11.6	9.4
Infer	50.7	33.1	54.8	41.3
MVD	67.6	54.8	63.6	58.9

		ML	DF	BO	UAF	OR/W
PCA	9	$\bullet \bullet $	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet$	
Saber	6	••••••••	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet$	
Flawfinde	r 2	$\bullet \bullet $	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet \bullet$	•••••	
RATS		•••••••	$\bullet \bullet \bullet \bullet$	••••	•••••	
Infer	5	$\bullet \bullet $	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet$	
MVD	17	$\bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$

[1] W. Li et al. PCA: memory leak detection using partial call-path analysis. ESEC/FSE 2020. [2] Y. Sui et al. Static memory leak detection using full-sparse value-flow analysis. ISSTA 2012.

• RQ2: How effective is *MVD* compared to static analysis-based vulnerability detectors?

11 }

Answer to RQ2: With the advantage of deep learning models in mining implicit vulnerability patterns, *MVD* performs better in comparison with the popular static analysis-based approaches.

• **RQ3**: How effective is FS-GNN for memory-related vulnerability detection?

Approach	A (%)	P (%)	R (%)	F1 (%)
GCN	61.2	17.3	8.2	11.1
GGNN	69.4	41.8	52.5	46.5
RGCN	72.7	49.3	58.1	53.3
FS-GNN	77.5	56.4	62.9	59.5

Answer to RQ3: FS-GNN can effectively contribute to the performance of *MVD*, as it can better capture the structured information of vulnerable code.

• **RQ4**: How efficient are *MVD* and baselines in terms of their time cost for detecting memory-related vulnerabilities?

Method	MVD	VulDeePecker	SySeVR	Devign	PCA	Saber	Infer	Flawfinder	RATS
Training Time(s)	2386.2	1019.5	1833.9	2583.7	N/A	N/A	N/A	N/A	N/A
Detection Time(s)	10.4	8.1	9.7	11.9	9.2	11.8	145.8	17.4	20.6

Answer to RQ4: In spite of a great deal of training time, *MVD* achieves relatively shorter detection time with better detection results, making a trade-off between accuracy and efficiency.

Conclusion

Workflow of MVD

Source Code Step 1. Feature Extraction Program Slices

Evaluation

CW

CWI

Research Questions

- RQ1: How effective is MVD compared to deep learning-based vulnerability detectors?
- RQ2: How effective is MVD compared to static analysis-based vulnerability detectors?
- RQ3: How effective is FS-GNN for memory-related vul
- RQ4: How efficient are MVD and baselines in terms of

DataSet

Project	#Version	#Samples	#Vertices	#Edges
Linux Kernel	2.6-4.20	868	26,917	29,512
FFmpeg	0.5-4.1	73	1,971	2,168
Asterisk	1.4-16.14	18	468	502
Libarchive	2.2-3.4	11	235	269
Libming	0.4.7	7	119	141
LibTIFF	3.8-4.0	24	584	639
Libav	12.3	16	526	573
LibPNG	1.0.x-1.6.x	13	392	447
QEMU	0.9-4.3	121	4,711	5,308
Wireshark	1.2-3.2	57	2,056	2,190
SARD	-	3,145	11,237	13,049
Total	-	4,353	49,216	54,798

Evaluation

• RQ1: How effective is MVD compared to deep learning-based vulnerability detectors?

Approach	A (%)	P (%)	R (%)	F1 (%)
VulDeePecker	60.9	51.4	35.1	41.7
SySeVR	63.4	53.3	62.9	57.7
Devign	68.3	54.8	66.1	59.9
MVD	74.1	61.5	69.4	65.2

Answer to RQ1: In comparison with the popular DLbased approaches, MVD achieves better detection performance by fully utilizing flow information via interprocedural analysis and FS-GNN.

⁽b) A Vulnerability Missed by Devign

15

Thank you!

