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Memory-related vulnerabilities can result in performance degradation and program crash, severely

threatening the security of modern software.
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Existing Efforts

• Static Analysis-Based Approaches

Infer
Highly dependent on pre-defined

vulnerability rules/patterns crafted by

security experts.

 The complex programming logic in real-

world software projects gets in the way of

the manual identification of the rules

Limitations



5

Existing Efforts

• Deep learning-Based Approaches



6

Existing Efforts

• Deep learning-Based Approaches



7

Existing Efforts

• Deep learning-Based Approaches



8

Existing Efforts

• Deep learning-Based Approaches



• Flow Information Underutilization

 Lack of interprocedural analysis.

 Partial flow information loss in model training.

• Coarse Granularity

 Focus on function-level or slice-level detection.
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Limitations
1 int SMB2_read(const unsigned int xid, struct cifs_io_parms

*io_parms, unsigned int *nbytes, char **buf, int *buf_type)
2 {
3 struct smb2_read_plain_req *req = NULL;
4 ...
5 - cifs_small_buf_release(req);
6 if (rc) {
7 if (rc != -ENODATA) {
8 trace_smb3_read_err(xid,req->PersistentFileId,

io_parms->tcon->tid, ses->Suid, io_parms->offset,
io_parms->length, rc);

9 } else
10 trace_smb3_read_done(xid,req->PersistentFileId,

io_parms->tcon->tid, ses->Suid, io_parms->offset, 0);
11 return rc == -ENODATA ? 0 : rc;
12 } else
13 trace_smb3_read_done(xid,req->PersistentFileId,

io_parms->tcon->tid, ses->Suid, io_parms->offset,
io_parms->length);

14 + cifs_small_buf_release(req);
15 ...
16 return rc;
17 }
18 void cifs_small_buf_release(void *buf_to_free)
19 {
20 ...
21 mempool_free(buf_to_free, cifs_sm_req_poolp);
22 ...
23 }

req

reqio_parms

Observation 1. Comprehensive and precise inter-

procedural flow analysis is necessary.

Observation 2. Sensitive contextual information within

flows helps to refine detection granularity.

A Use-After-Free Vulnerability in Linux Kernel
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Our Solutions

• Flow Information Underutilization

 Lack of interprocedural analysis.

 Partial flow information loss in model training.

• Coarse Granularity

 Focus on function-level or slice-level detection.

• Fully Utilizing Flow Information

✓ Combining Program Dependence Graph (PDG)

with Call Graph (CG).

✓ A novel Flow-Sensitive Graph Neural Networks

(FS-GNN).

• Fine Granularity

✓ Formalizing the detection of vulnerable

statements as a node classification problem.
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Workflow of MVD
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Details of MVD

• Feature Extraction

※ Program Dependence Graph + Call Graph

※ Program slicing

System API Calls

Pointer Variable

1 void memory_leak ()
2 {
3 char *str = “This is a string”;
4 char *str1;
5 memory_leak_func (strlen(str), &str1);
6 strcpy (str1, str);
7 }
8 void memory_leak_func (int len, char **stringPtr)
9 {
10 char *p = malloc (sizeof(char) * (len + 1));
11 *stringPrt = p;
12 }

(a) Exemplary Code Sample

Slices
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(b) Program Slicing
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Details of MVD

• Node Embedding

※ Doc2Vec [1]

[1] Quoc V. Le and Tomás Mikolov. Distributed Representations of Sentences and Documents. ICML 2014.

• Graph Learning

※ Graph Embedding

※ Resampling

※ Classification
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Research Questions

• RQ1: How effective is MVD compared to deep learning-based vulnerability detectors?

• RQ2: How effective is MVD compared to static analysis-based vulnerability detectors?

• RQ3: How effective is FS-GNN for memory-related vulnerability detection?

• RQ4: How efficient are MVD and baselines in terms of their time cost for detecting memory-related vulnerabilities?

DataSet
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[1]

[2]

[3]

[1] Z. Li et al. VulDeePecker: A Deep Learning-Based System for Vulnerability Detection. NDSS 2018.
[2] Z. Li et al. SySeVR: A Framework for Using Deep Learning to Detect Software Vulnerabilities. TDSC 2021.
[3] Y. Zhou et al. 2019. Devign: Effective Vulnerability Identification by Learning Comprehensive Program Semantics via Graph Neural
Networks. NeurIPS 2019.

Answer to RQ1: In comparison with the popular DL-

based approaches, MVD achieves better detection

performance by fully utilizing flow information via

interprocedural analysis and FS-GNN.

1 static bool try_merge_free_space(...){
2 ...
3 right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
4 if (right_info && rb_prev(&right_info->offset_index))
5 left_info = rb_entry(rb_prev(&right_info->offset_index),

struct btrfs_free_space, offset_index);
6 else
7 left_info = tree_search_offset(ctl, offset - 1, 0, 0);
8 if (...) { ...
9 kmem_cache_free(btrfs_free_space_cachep, right_info);
10 Merged = true;
11 if (...) { ...
12 info->offset = left_info->offse;
13 info->bytes += left_info->bytes}
14 return merged;
15 }

(a) A Vulnerability Missed by Devign
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Evaluation
• RQ2: How effective is MVD compared to static analysis-based vulnerability detectors?
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[1] W. Li et al. PCA: memory leak detection using partial call-path analysis. ESEC/FSE 2020.
[2] Y. Sui et al. Static memory leak detection using full-sparse value-flow analysis. ISSTA 2012.

[1]
[2]



Answer to RQ2: With the advantage of deep learning

models in mining implicit vulnerability patterns, MVD

performs better in comparison with the popular static

analysis-based approaches.
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Evaluation
• RQ2: How effective is MVD compared to static analysis-based vulnerability detectors?

1 static int l2tp_ip_bind(struct sock *sk, struct sockaddr *uaddr,
int addr_len){

2 ...
3 - if (!sock_flag(sk, SOCK_ZAPPED))
4 - return –EINVAL;
5 ...
6 read_unlock_bh(&l2tp_ip_lock);
7 lock_sock (sk);
8 + if (!sock_flag(sk, SOCK_ZAPPED))
9 + goto out;
10 ...
11 }
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Evaluation
• RQ3: How effective is FS-GNN for memory-related vulnerability detection?

• RQ4: How efficient are MVD and baselines in terms of their time cost for detecting memory-

related vulnerabilities?

Answer to RQ3: FS-GNN can effectively contribute to the

performance of MVD, as it can better capture the structured

information of vulnerable code.

Answer to RQ4: In spite of a great deal of training time, MVD achieves relatively shorter detection time with better

detection results, making a trade-off between accuracy and efficiency.
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Conclusion



Thank you!
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