
MVD : Memory-Related Vulnerability Detection Based on
Flow-Sensitive Graph Neural Networks

Sicong Cao1, Xiaobing Sun1, Lili Bo1, Rongxin Wu2, Bin Li1, Chuanqi Tao3

1Yangzhou University
2Xiamen University

3Nanjing University of Aeronautics and Astronautics

44th International Conference on Software Engineering, ICSE 2022, Pittsburgh, PA, USA

Memory-related vulnerabilities can result in performance degradation and program crash, severely

threatening the security of modern software.

2

Background

Memory-related vulnerabilities can result in performance degradation and program crash, severely

threatening the security of modern software.

3

Background

4

Existing Efforts

• Static Analysis-Based Approaches

Infer
Highly dependent on pre-defined

vulnerability rules/patterns crafted by

security experts.

 The complex programming logic in real-

world software projects gets in the way of

the manual identification of the rules

Limitations

5

Existing Efforts

• Deep learning-Based Approaches

6

Existing Efforts

• Deep learning-Based Approaches

7

Existing Efforts

• Deep learning-Based Approaches

8

Existing Efforts

• Deep learning-Based Approaches

• Flow Information Underutilization

 Lack of interprocedural analysis.

 Partial flow information loss in model training.

• Coarse Granularity

 Focus on function-level or slice-level detection.

9

Limitations
1 int SMB2_read(const unsigned int xid, struct cifs_io_parms

*io_parms, unsigned int *nbytes, char **buf, int *buf_type)
2 {
3 struct smb2_read_plain_req *req = NULL;
4 ...
5 - cifs_small_buf_release(req);
6 if (rc) {
7 if (rc != -ENODATA) {
8 trace_smb3_read_err(xid,req->PersistentFileId,

io_parms->tcon->tid, ses->Suid, io_parms->offset,
io_parms->length, rc);

9 } else
10 trace_smb3_read_done(xid,req->PersistentFileId,

io_parms->tcon->tid, ses->Suid, io_parms->offset, 0);
11 return rc == -ENODATA ? 0 : rc;
12 } else
13 trace_smb3_read_done(xid,req->PersistentFileId,

io_parms->tcon->tid, ses->Suid, io_parms->offset,
io_parms->length);

14 + cifs_small_buf_release(req);
15 ...
16 return rc;
17 }
18 void cifs_small_buf_release(void *buf_to_free)
19 {
20 ...
21 mempool_free(buf_to_free, cifs_sm_req_poolp);
22 ...
23 }

req

reqio_parms

Observation 1. Comprehensive and precise inter-

procedural flow analysis is necessary.

Observation 2. Sensitive contextual information within

flows helps to refine detection granularity.

A Use-After-Free Vulnerability in Linux Kernel

10

Our Solutions

• Flow Information Underutilization

 Lack of interprocedural analysis.

 Partial flow information loss in model training.

• Coarse Granularity

 Focus on function-level or slice-level detection.

• Fully Utilizing Flow Information

✓ Combining Program Dependence Graph (PDG)

with Call Graph (CG).

✓ A novel Flow-Sensitive Graph Neural Networks

(FS-GNN).

• Fine Granularity

✓ Formalizing the detection of vulnerable

statements as a node classification problem.

11

Workflow of MVD

12

Workflow of MVD

13

Workflow of MVD

14

Details of MVD

• Feature Extraction

※ Program Dependence Graph + Call Graph

※ Program slicing

System API Calls

Pointer Variable

1 void memory_leak ()
2 {
3 char *str = “This is a string”;
4 char *str1;
5 memory_leak_func (strlen(str), &str1);
6 strcpy (str1, str);
7 }
8 void memory_leak_func (int len, char **stringPtr)
9 {
10 char *p = malloc (sizeof(char) * (len + 1));
11 *stringPrt = p;
12 }

(a) Exemplary Code Sample

Slices

str1

stringPtr

p

stringPtr

str

4

3
8

10

11

5

1

PDG

str1

stringPtr

p

str1

stringPtr

str

str 4

3
8

10

11

5

6

1

Data-flow edgePoint of interest

Normal node Control-flow edge

Call edge

Return edge

(b) Program Slicing

15

Details of MVD

• Node Embedding

※ Doc2Vec [1]

[1] Quoc V. Le and Tomás Mikolov. Distributed Representations of Sentences and Documents. ICML 2014.

• Graph Learning

※ Graph Embedding

※ Resampling

※ Classification

16

Details of MVD

• Node Embedding

※ Doc2Vec [1]

[1] Quoc V. Le and Tomás Mikolov. Distributed Representations of Sentences and Documents. ICML 2014.

• Graph Learning

※ Graph Embedding

※ Resampling

※ Classification

17

Details of MVD

• Node Embedding

※ Doc2Vec [1]

[1] Quoc V. Le and Tomás Mikolov. Distributed Representations of Sentences and Documents. ICML 2014.

• Graph Learning

※ Graph Embedding

※ Resampling

※ Classification

18

Details of MVD

• Node Embedding

※ Doc2Vec [1]

[1] Quoc V. Le and Tomás Mikolov. Distributed Representations of Sentences and Documents. ICML 2014.

• Graph Learning

※ Graph Embedding

※ Resampling

※ Classification

Research Questions

• RQ1: How effective is MVD compared to deep learning-based vulnerability detectors?

• RQ2: How effective is MVD compared to static analysis-based vulnerability detectors?

• RQ3: How effective is FS-GNN for memory-related vulnerability detection?

• RQ4: How efficient are MVD and baselines in terms of their time cost for detecting memory-related vulnerabilities?

DataSet

19

Evaluation

• RQ1: How effective is MVD compared to deep learning-based vulnerability detectors?

20

Evaluation

[1]

[2]

[3]

[1] Z. Li et al. VulDeePecker: A Deep Learning-Based System for Vulnerability Detection. NDSS 2018.
[2] Z. Li et al. SySeVR: A Framework for Using Deep Learning to Detect Software Vulnerabilities. TDSC 2021.
[3] Y. Zhou et al. 2019. Devign: Effective Vulnerability Identification by Learning Comprehensive Program Semantics via Graph Neural
Networks. NeurIPS 2019.

Answer to RQ1: In comparison with the popular DL-

based approaches, MVD achieves better detection

performance by fully utilizing flow information via

interprocedural analysis and FS-GNN.

1 static bool try_merge_free_space(...){
2 ...
3 right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
4 if (right_info && rb_prev(&right_info->offset_index))
5 left_info = rb_entry(rb_prev(&right_info->offset_index),

struct btrfs_free_space, offset_index);
6 else
7 left_info = tree_search_offset(ctl, offset - 1, 0, 0);
8 if (...) { ...
9 kmem_cache_free(btrfs_free_space_cachep, right_info);
10 Merged = true;
11 if (...) { ...
12 info->offset = left_info->offse;
13 info->bytes += left_info->bytes}
14 return merged;
15 }

(a) A Vulnerability Missed by Devign

21

Evaluation
• RQ2: How effective is MVD compared to static analysis-based vulnerability detectors?

9

17

5

1

2

6

PCA

Saber

Flawfinder

RATS

Infer

MVD

ML DF BO UAF OR/W

[1] W. Li et al. PCA: memory leak detection using partial call-path analysis. ESEC/FSE 2020.
[2] Y. Sui et al. Static memory leak detection using full-sparse value-flow analysis. ISSTA 2012.

[1]
[2]

Answer to RQ2: With the advantage of deep learning

models in mining implicit vulnerability patterns, MVD

performs better in comparison with the popular static

analysis-based approaches.

22

Evaluation
• RQ2: How effective is MVD compared to static analysis-based vulnerability detectors?

1 static int l2tp_ip_bind(struct sock *sk, struct sockaddr *uaddr,
int addr_len){

2 ...
3 - if (!sock_flag(sk, SOCK_ZAPPED))
4 - return –EINVAL;
5 ...
6 read_unlock_bh(&l2tp_ip_lock);
7 lock_sock (sk);
8 + if (!sock_flag(sk, SOCK_ZAPPED))
9 + goto out;
10 ...
11 }

23

Evaluation
• RQ3: How effective is FS-GNN for memory-related vulnerability detection?

• RQ4: How efficient are MVD and baselines in terms of their time cost for detecting memory-

related vulnerabilities?

Answer to RQ3: FS-GNN can effectively contribute to the

performance of MVD, as it can better capture the structured

information of vulnerable code.

Answer to RQ4: In spite of a great deal of training time, MVD achieves relatively shorter detection time with better

detection results, making a trade-off between accuracy and efficiency.

24

Conclusion

Thank you!

25

