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Abstract
The past few years have witnessed the wide application of machine learning models to fix
vulnerabilities automatically. However, existing approaches cannot capture the characteris-
tics of vulnerabilities that are helpful to improve the effectiveness of automated vulnerability
fixing. In this paper, we propose a novel approach for automatically fixing vulnerabilities,
called SPVF. SPVF captures the security property from the descriptive information about
the vulnerability. SPVF is based on the attention mechanism and uses the abstract syntax
tree as well as the security properties, integrating them using the pointer generator. The
experimental results on two public datasets show that SPVF outperforms the state-of-the-art
approaches by 13% for C/C++ and 47% for Python. And SPVF is capable of successfully
fixing 153 C/C++ vulnerabilities and 276 Python vulnerabilities.

Keywords Vulnerability fixing · Software security · Attention-based models ·
Pointer generator

1 Introduction

A vulnerability is an open weakness of the software that can be exploited for one or
more threats. The users and vendors suffer a lot from past vulnerabilities like Heartbleed
(Durumeric et al. 2014) and shellshock (Delamore and Ko 2015). Fixing the vulnera-
bilities, on the other hand, is an absolute necessity. Still, it is tedious, error-prone and
time-consuming to manually fix the vulnerability (Sun et al. 2019; Cao et al. 2022; Wei
et al. 2021).

Automatically fixing vulnerabilities can be seen as a subset of Automated Program
Repair (APR), which aims at automatically finding a solution to software bugs without
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human intervention. The traditional ways of solving APR problem rely heavily on hand-
crafted rules and are applicable to specific languages. On the contrary, methods using
machine learning techniques do not need specific rules tailored for the specific languages.
Due to the wealth of data that is available with open-source code repositories, Common
Vulnerabilities and Exposures (CVE) (CVE 2021), etc. it is possible to use Neural Machine
Translation (NMT) models to automatically fix vulnerabilities. NMT models repair the
bugs, by learning infinite fixing patterns from previous good patches instead of a small num-
ber of previous rules specified. Therefore, NMT approaches are proposed as likely means
of translating the vulnerable code into a correct patch.

Nevertheless, the current APR methods based on NMT models fall short due to the
ignorance of vulnerability characteristics. With plenty of researches for analyzing the vul-
nerabilities (Wei et al. 2021; Cheng et al. 2021; Li et al. 2018; Chakraborty et al. 2020)
and public available vulnerability descriptions on exploit database (CWE 2021a) and CVE,
it is time to explore the potential of the vulnerabilities characteristics after analyzing. The
vulnerability descriptions published by CVE offer professional insight into the characteris-
tics of vulnerabilities. The causes and effects of each vulnerability are carefully described
in these descriptions. Moreover, the code snippets of the vulnerabilities are supposed to be
with fewer lines of code and fewer logical changes involved (Ni et al. 2020; Li and Paxson
2017; Wei et al. 2021). Hence, the automatic patching model is supposed to perform more
successfully by considering these vulnerability characteristics.

There are two challenges in capturing vulnerability characteristics: 1) vulnerability char-
acteristics are hard to be extracted: the descriptions in natural languages of vulnerabilities
have lots of noisy information that the security-relevant information cannot be noticed and
learned by NMT models. 2) the characteristics of vulnerabilities are difficult to combine
with NMT models, i.e., the concatenation of all characteristics might decrease the perfor-
mance because of its incapability of dealing with long sequences (Yang et al. 2020; Tufano
et al. 2018) and the comparatively little useful information over the whole sequence to learn.

To deal with the above challenges, we propose Security Property assisted Vulnerability
Fixing (SPVF) which is based on the attention mechanism. We also use the function-level
segmentation and Abstract Syntax Tree (AST) to provide a higher level of abstraction and
to better capture the code characteristics. Besides, the security properties, which refer to
the knowledge we extracted from natural language descriptions of the vulnerabilities and
the vulnerability categories, are also considered. Second, we introduce the pointer generator
network to integrate the AST representation and the security properties. The pointer genera-
tor learns to choose one token in the local context and copy the token as our prediction. The
pointer generator network learns better with the additional information including the AST
representation and security properties. SPVF is thus capable of making better predictions
for patching the vulnerability.

With a vulnerable function location and the related exploit as inputs, SVPF works as
follows. First, we capture the security property from the descriptive information about the
vulnerability. Then, we feed the security property, serialized AST and the function-level
code representation into the model for training. For a public exploit with code and descrip-
tion, SPVF can be used to extract the security property and generate a patch after feeding it
into the trained model.

We evaluated SPVF on both C/C++ and Python datasets. The results demonstrate that
SPVF has a 13% improvement for fixing C/C++ vulnerabilities and a 47% improvement
for fixing Python vulnerabilities compared with the state-of-art approach SeqTrans (Chi
et al. 2020).

To sum up, this paper makes the following contributions.
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– We propose SPVF for automatically fixing vulnerabilities based on an attention-based
model, i.e. Transformer, using pointer generator to integrate the security properties and
AST representations.

– We evaluated our approach on two public vulnerability fixing datasets. The experi-
mental results show that SPVF can fix 153 C/C++ vulnerabilities and 276 Python
vulnerabilities. To the best of our knowledge, this is the best result reported on
vulnerability fixing using attention-based models.

The remainder of this paper is organized as follows. Section 2 presents the motiva-
tion; Section 3 introduces the background, including transformer architecture and attention
mechanism; Section 4 describes the proposed SPVF model; Section 5 presents the details
of experimental setting and implementation; Section 6 discusses the experimental results.
Section 7 discusses the threats to validity; Section 8 summarizes the related work and
Section 9 concludes this work with future research directions.

2 Motivation

When a potential vulnerability is discovered, an exploit might be published before the CVE
is published. A public repository like Exploit Database (CWE 2021a) shows that among
the 42,450 public available exploits, 80% of the exploits are published before the CVEs are
published (Palo Alto Networks 2021). Also, the Exploit Database provides reports in natu-
ral language with the corresponding vulnerable software in the CVE format. As is shown in
Fig. 1a, it is an exploit for Buffer overflow (DoS) Remote public on Exploit Database. The
Exploit Title, Description and the Vulnerability Type provide vital information for patching
the vulnerability. This inspires us to use the natural language descriptions for better patch-
ing. Also, note that the exploit database is a CVE compliant archive and that some of the
CVE entity has the link to the exploit database with similar descriptions for the vulnerability
(Exploit-DB 2021a; Zhou et al. 2021).

Figure 1 also presents three vulnerable methods in CVE. As is shown in Fig. 1b, the
words bound, LocaleLowercase indicate its location and methods to exploit. The category of
this vulnerability is CWE-125, which is an out-of-bounds read, carrying potentially useful
information. As is shown in Fig. 1c, the word “access” indicates that the bounds of the
function arguments may be paid more attention to. The category of the vulnerability in
Fig. 1d is also CWE-125. The word “over-read” indicates missing of boundary check.

From the natural language description with different vulnerable methods in Fig. 1b and
c, we can find that they are all about inappropriate access and some boundary issues. The
patches for the two methods are both adding the if statement for the boundary check.
This inspires us that different vulnerabilities with similar keywords in the natural language
descriptions might have similar ways of patching. In addition, from Fig. 1b and d, we can
see that with the same CWE category, an if statement for boundaries check is added for fix-
ing the hole even when the natural language descriptions have few keywords in common.
This also inspires us that the vulnerable code with the same CWE classification might also
have similar ways of patching.

For a newly published exploit on exploit database, the above observations inspire us
to first use tools (e.g. BGNN4VD (Cao et al. 2021), ReVeal (Chakraborty et al. 2020),
IVDetect (Li et al. 2021)) to locate the exact vulnerable function and then use the exploit
with the description and the code at the function level as the input, finally extract the
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Fig. 1 The Exploits and the vulnerable method

security-relevant words as well as the function name and variable name from the description
for model training and model inference. Our insight is that, the addition of these security
properties not only assists the repair in the way of fixing (e.g., add, delete or modify) but
also in emphasizing the most relevant code vocabularies.

Furthermore, notice that the context as well as the structure of the code matter with the
vulnerable code (Chen et al. 2021; Lutellier et al. 2020). For instance, if the argument c
in the LocaleLowercase function in Fig. 1b is not captured by the model, there would be
less likely for SPVF to successfully patch the vulnerability. So are the argument voice in
Fig. 1c and the argument font in Fig. 1d. The abstract syntax tree captures the code structure.
Directly using AST to generate the fixed code snippet is a much too ambitious goal, yet
using AST for assistance is a feasible approach for the model to understand the structure of
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the code. Based on the above observation, we focus our attention on functional-level repair
and use the AST representation for further assistance.

3 Background

SPVF receives vulnerable code at the function level as the input and produces repaired
code as the output, which is quite similar to the idea for NMT, that is to translate from
one language to another. Because SPVF is based on Transformer (Vaswani et al. 2017),
a typical architecture for attention-based NMT, we introduce attention-based NMT with
special attention to Transformer.

An NMT architecture basically consists of an encoding component and a decoding com-
ponent. After a sequence of tokens is read in by the encoder, the decoder generates an output
sequence. In the case of natural language translation, the input sequence of tokens I love
apple in English translates into the J’aime la pomme in French.

3.1 Transformer Architecture

Transformer (Vaswani et al. 2017) uses the standard encoder-decoder NMT architecture.
Inside an encoder component, there might be several stacks of encoders with the same
architecture. An encoder consists of a multi-head attention layer along with a feed forward
attention layer. The inputs of the encoder flow through the multi-head attention layer into
the feed forward layer. A decoder also has these two layers. And there is an encoder-decoder
multi-head layer between the two layers that draws relevant information from the encoders
(Transformer 2020).

3.2 AttentionMechanism

The attention mechanism is proposed by Bahdanau et al. (2015) to enable a neural model
to inspect the relevance between each pair of tokens in long sequences. The attention mech-
anism is an effective way of alleviating the long-dependency problem for long sequences.
And the multi-head attention proposed by the Transformer is a way of improving the per-
formance of the original attention function. The attention function is computed by the query
matrix (Q) generated from the target sequence, the key matrix (K) for the decoder and the
value matrix (V) generated from the source sequence as follows:

Attention (Q,K, V ) = softmax

(
QKT

√
dk

)
V (1)

And when it comes to the multi-head attention, there are multiple sets of query, key, value
weight matrices.

Transformer uses the multi-head attention in three ways. The first is in the encoder
component; the second is between the encoder-decoder component; the third is in the
decoder component. For the first and third way of using the multi-head attention, the source
sequences are similar to the target sequences, that is the query, key, value matrices are the
same. For the second way, the source sequences come from the output of the encoder while
the target sequences come from the previous decoder.
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4 ProposedModel

4.1 Overview

Figure 2 shows an overview of the SPVF. There are two main stages of SPVF, namely
the training stage and the inference stage. In the training phase, we represent the input by
the source code, the AST representation and extract the security properties from the raw
security-relevant descriptions in natural language. Then, based on the traditional Trans-
former architecture, we encode the vulnerable code, AST representation and the security
properties as the input, the repaired code as the output respectively. Finally, we feed them
into the pointer generator network which is an extension of the Transformer, train the model
and tune the network with different sets of hyperparameters. In the inference stage, a vulner-
able functional-level code with its corresponding security-relevant descriptions feeds into
SPVF as the input. SPVF tokenizes the input and then feeds them into the model that has
been trained in the training stages, generating a list of top-k patches. Finally, SPVF filters
the patches list via compiling.

4.2 Input Representation

The inputs of training model are divided into three parts: 1) the code for vulnerable method
2) the AST representation 3) the security proprieties extracted from the natural language
description as well as the CWE category.

4.2.1 Source Code for the Vulnerable Method

We clean the source code before feeding it into the neural network. Concretely, we remove
non-ASCII characters, all the comments, remove the content in print function, remove
multi-blanks and lines and try to make sure all the split characters like “;”, “{”, “}” are in
the format [blank][splitcharacter][blank].
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4.2.2 Serialized AST Representation

Figure 3 shows an AST with its corresponding vulnerable code snippet which is first intro-
duced in Fig. 1c. We use the Joern (Yamaguchi ) for representing the AST for C/C++ code
snippet which is a fuzzy parser that enables the parsing even for a very short code snippet.

As is shown in Fig. 3, AST representation captures the structure of the code. In the AST
encoder, SPVF traverses the tree in a depth-first pre-order manner. And when a node is
visited, the corresponding node type is recorded, represented as:

ASTj = (Node1, T ype1), ...(Nodei, T ypei) (2)

where j denotes the j th function.

4.2.3 Security Property Extraction

The illustrated examples in Section 2 give concrete examples of raw information for the
security properties. The information is gathered from the CVE summary from the CVE
(CVE 2021). However, the raw information is noisy, making it difficult for the model to
capture the security-relevant information from the noisy data. We use the NLTK (Bird and
Loper 2004) toolkit to preprocess the reports in natural languages, perform lemmatization
and remove the stopwords along with HTML tags. TF-IDF algorithm is used to find the
most important and relevant information about the vulnerability. TF-IDF algorithm has been
widely used for extracting important information in bug reports (Koyuncu et al. 2020; Xin
and Reiss 2017; Pradel et al. 2020; Cooper et al. 2021) and it is effective for extracting the
security-relevant words from the CVE summary.
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The TF-IDF algorithm is based on the idea that the importance of a word is proportional
to the number of times it appears in the entire text database K , and inversely proportional
to how common the word is. By calculating the multiplication of the two indicators (i.e.
Term Frequency (tf ) and Inverse Document Frequency (idf )), we can automatically extract
document keywords. Finally, we come to a dictionary with 100 security-relevant words,
some of the most important words we consider are “bound”, “auth”.

Security property refers to the knowledge we extracted from natural language descrip-
tions of the vulnerabilities and the vulnerability categories. Note that the function name and
variable name that appear in the natural language descriptions also are taken into considera-
tion. At last, we arrive at the security property consisting of security-relevant keywords, the
function name, the variable name and the vulnerability category.

4.3 Model Architecture

Our architecture is based on the “Transformer” and contains encoder components and
decoder componeds. The main difference is the way of calculating the attention distributions
for code along with its AST representation and security properties.

4.3.1 Encoder

We follow the “Transformer” architecture with six stacks of encoders. The encoder has three
inputs, namely the code, serialized AST and the key security properties. To incorporate the
order of the words into our model, we add the positional encoding in the first place. The
output encoding after positional encoding is passed into the first encoder. Then, for every
encoder, the input of the encoder first flows into a multi-head self attention layer. After
addition and normalization of the self attention, it then flows into a feed forward layer. The
output encoding is then passed to the next encoder.

4.3.2 Decoder

The decoder component also consists of six stacks of decoders. The decoder also has
three inputs, namely the code, serialized AST and the key security properties. The layer of
encoder-decoder multi-head attention receives the input encoding from the self multi-head
attention layer. Also, as can be seen in Fig. 4, the attention distributions directly calculated
from the source input and security properties are also part of the input of the multi-head
attention layer in the encoder. The remaining parts are the same as the encoder.

4.3.3 Attention for Code and Security Properties

The tokens from the inputs wi , the source code, the AST representation part and the security
properties part are fed into the encoder in the same way, coming to a sequence of encoder
hidden states hi . Then, we calculate the attention distributions according to Bahdanau et al.
(2015):

et
i = vT tanh(Whhi + Wsst + battn) (3)

at = softmax(et ) (4)

where t means on the t’s step, st is the decoder state. And v, Wh,Ws and battn are learnable
parameters. The attention distributions tell the decoder where to look up by generating a
probability distribution over all the input tokens. Then, a weighted sum of hidden states by
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Fig. 4 The architecture used in SPVF

the source code along with AST representation and the security properties are calculated
using the respective attention distributions, called the context vector h∗

t :

h∗
t =

∑
i

at
ic
hic +

∑
i

at
iast

hiast +
∑

i

at
is
his (5)

where c represents the code and s represents the extracted security properties.
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4.3.4 Pointer Generator Network

Proposed by See et al. (2017), pointer generator network was originally used for abstract text
summarization. It is proposed due to the basic errors that seq2seq models frequently swamp
into. Integration of pointer generator network in SPVF tries to drag the network out of the
swamp of not knowing the basics of code like missing the semicolon and the characteristics
of the vulnerabilities.

The allowance of both copying words via the source code, the indication of security prop-
erties and the generating words from the fixed vocabulary is made possible via a probability.
And we use the same name as proposed in Abigail See (See et al. 2017) for pgen. pgen has a
value between 0 and 1. The closer is pgen to 0, the more likely for the model to refer to the
source code and security properties. Specifically, on every timestep t , pgen is calculated by
the context vector h∗

t as well as the decoder states st and the decoder input xt :

pgen = σ(wT
h∗h∗

t + wT
s st + wT

x xt + bptr) (6)

where vectors wh∗ , ws, wx and scalar bptr are learnable parameters and σ is the sigmoid
function. For any generated tokens, it can be generated via choosing from the extended
vocabulary or via sampling from the attention distributions. The extended vocabulary con-
tains all tokens in the code and its security properties in the dataset while the vocabulary
only contains a limited number of tokens. So, we come to the final probability distribution
over the extended vocabulary:

P(w) = pgen × Pvocab(w) + (1 − pgen)

×
⎛
⎝ ∑

i:i=is ,wi=w

at
is

+
∑

i:i=ip,wi=w

at
ic

+
∑

i:i=iast ,wi=w

at
iast

⎞
⎠ (7)

When w is an out-of-vocabulary (OOV) word, the final probability distribution is no longer
zero because it can still refer to the aic , aiast or ais depending on whether it is code, AST
representation or security properties. Thus, we are capable of producing OOV words by
copying words via pointing.

4.3.5 Loss Function and Beam Search

The loss function is used to optimize the model. For time step t , the negative log probability
of the target word w∗

t is the loss. And the probability is the final probability by taking the
extended vocabulary into consideration.

losst = − logP(w∗
t ) (8)

and the overall loss for the whole sequence is:

loss = 1

T

T∑
t=0

loss t (9)

On each step, our model selects and holds to B number of the best alternatives instead of
merely choosing the word with the highest probability. This is the Beam search (Freitag and
Al-Onaizan 2017) technique and B is called the beam width. By setting the parameter K in
our model, we are capable of getting the top K patches for the vulnerable function instead
of the most likely patch.
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4.4 Filtering

We filter the patches following the simple rule of whether they can be compiled or not.
We do not use the test suite for filtering which APR methods uses, because the test suite
for the dataset might be hard to gather, but also the vulnerable code in nature is different
from the buggy code where not all vulnerable code snippets have a test case to trigger. In
other words, some of the vulnerabilities are about the problem of usage of the potentially
vulnerable function whilst no test case can be found to trigger the problem.

5 Experiments

5.1 Research Questions

– RQ1: How does SPVF perform against state-of-the-art automatic vulnerability repair
techniques?

RQ1 is to investigate the SPVF capability for fixing vulnerabilities against the state-
of-the-art approaches.

– RQ2: What are the contributions of different components of SPVF?
RQ2 is to find out whether each component of the model contributes to the overall

performance of SPVF and which component has the biggest contribution.
– RQ3: What category of vulnerability is SPVF good at and not good at patching?

RQ3 aims to understand the SPVF’s way of fixing the vulnerabilities by investigating
into the category which successful patches belong to and the cases that SPVF failed at
patching.

5.2 Dataset

The detailed statistics of these datasets are listed in Table 1. Our experiment is conducted
based on two public datasets: the C/C++ vulnerability dataset (Fan et al. 2020) and the
Python vulnerability dataset (Wartschinski 2019). The C/C++ vulnerability dataset is from
MSR 20 with 188636 C/C++ function pairs. It is scraped from GitHub (Github 2007),
CVE (CVE 2021) and CWE (Exploit-DB 2021b). The C/C++ dataset is extracted from
348 projects’ code repositories with a time span of 17 years, from 2002 to 2019. Despite
the abundant information it provides, the vulnerable code that can be used for training is
relatively scarce due to the following two reasons. First, a large proportion of the functions
are labeled as not vulnerable. This proportion of functions might be useful for tasks like
vulnerability detection (Li et al. 2022). But it cannot provide code change information for
the vulnerability fixing tasks. Second, many functions are not sliced in an accurate way,
failing to be compiled.

To address these issues, we exclude the functions that are labeled as not vulnerable and
the functions that fail to be analyzed by the compiler. The rest of the data makes up a dataset
containing 10,739 function pairs. The Python dataset was originally used by VUDENC
(Vudenc 2021) which is a tool for vulnerability detection. The data is now available on zen-
odo.1 After mining the data from GitHub (Github 2007), they collect the vulnerable function
by identifying whether it is a vulnerability by capturing keywords like “SQL injection issue”

1https://zenodo.org/record/3559203#.XeRoytVG2Hs

https://zenodo.org/record/3559203#.XeRoytVG2Hs
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Table 1 Details of vulnerability dataset

Statistics C/C++ Python

Train 8591 3624

Valid 1074 453

Test 1074 453

Total 10739 4530

Avg. code token length 281 55

Avg. security property token length 82 53

Max. code token length 583 561

Max. security property token length 119 136

from the commit. As is described in Section 4.2.3, security properties comprise security-
relevant keywords, the function name and variable name that appear in the natural language
descriptions and the vulnerability category. For the C/C++ dataset, we extract the security-
relevant keywords from the CVE summary and the vulnerability category according to the
CWE. For the Python dataset, we directly use the security keywords entity and vulnera-
bility category in the dataset. The dataset with security property is available on zenodo.2

As can be seen in Table 1, the Python dataset is smaller than C/C++ dataset with a
code length. After observing the dataset, we also observe that the Python dataset generally
has a more precise and accurate slicing of the code than the C/C++ dataset. For both the
C/C++ vulnerability dataset and the Python dataset, we split the data for 80% training, 10%
validation, and 10% test.

5.3 EvaluationMetrics

To measure the performance of our approach, we calculated the accuracy for SPVF predict-
ing a successful patch. We introduce the concept of the compilable patch and the correct
patch (Lutellier et al. 2020). Compilable patch refers to the patch that can be compiled
successfully. Correct patch refers to the patch that is the same as the target code. When gen-
erating K patches by beam search, we deem that the source code is successfully patched if
any of the patches out of K is a correct patch.

We use the seemingly coarse way of evaluation for the following two reasons. First,
unlike bugs that are mostly related to a failed test suite, some of the vulnerable code snippets
do not correspond to a test suite. So, the traditional way of validation via testing is unfea-
sible for the vulnerabilities. Second, the datasets available for the vulnerabilities are small
considering the huge demand for data for training an attention-based model like SPVF, let
alone the test suites for some of the vulnerabilities which are even more scarce.

5.4 Parameter Settings

Vocabulary We considered a vocabulary of 8000 tokens and extended it with 1000 input
position markers. Source position markers are for Out Of Vocabulary tokens so that the
identities can be recovered after generation. Concretely, the token not in the vocabulary is
represented by numbered 〈unk − i〉. For example, any 〈unk〉 token in the text is replaced

2https://zenodo.org/record/6324846

https://zenodo.org/record/6324846
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with 〈unk − 1〉 if it appears in the first input position, 〈unk − 2〉 if it appears in the second
input position, and so on. By testing a number of settings, we find that 8000 tokens and
1000 position markers are able to represent over 99.6% of the tokens.

Network Parameters We used the grid search to tune the hyperparameters. After training
and evaluating each possible hyperparameters sets, we select the hyperparameter that pro-
duces the best results. We set the peak learning rate of 0.08 and used the inverse square root
as a learning rate scheduler. It sets a constant learning rate for the first k, then exponentially
decays the learning rate until pre-training is over. And we set the warm up for 500 parame-
ter updates. We used the Adam (Kingma and Ba 2015) as the optimizer. For each training,
we stopped at coverage or until we reached 80 epochs. The primary parameters are shown
as follows:

– Peak learning rate: 0.08
– Optimizer: adam
– Dropout: 0.1
– Attention dropout: 0.1

Input and Output The input to the SPVF as illustrated in Fig. 4 has two parts, the natural
language description part and the function-level vulnerable code part. The output is the code
patches.

Usage We are capable of using the SPVF after its being trained to fix a vulnerability. A
list of repaired code patches shall be provided to give the user suggestions of fixing the
vulnerability.

5.5 Baselines

We consider SeqTrans (Chi et al. 2020) as our baseline which is a vulnerability tool using
NMT techniques and can be applied for C/C++ and Python dataset. It is a state-of-the-
art tool for vulnerability fixing using NMT models. It is a tool for automatic vulnerability
fix via sequence to sequence learning. It leverages data flow dependencies and uses the
“Transformer” model.

5.6 Methodology

5.6.1 RQ1 Implementation

To answer RQ1, we first obtained the security property (vulnerability category and the
security-relevant words) and the AST representation. We classified C/C++ vulnerabilities
according to the classification criteria by CWE (CWE 2021b). According to CWE, The
classification is roughly aligned with MITRE’s research into vulnerability theory and there
is minimal overlap between different categories. For the Python dataset, we directly adopted
the vulnerability category used in the dataset. Classification details3 are shown in Table 2.

Because the code for SeqTrans hasn’t yet been published, we strictly followed the steps
of SeqTrans. Instead of using AST representation to assist in fixing, SeqTrans uses the data

3Note that a small number of vulnerabilities cannot be classified into the classifications listed due to the
absence of CWE id information in the dataset.
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Table 2 Details of category for
vulnerability dataset Class Category

C/C++
0 Improper access control (284)

1 Improper interaction between multiple correctly-behaving
entities (435)

2 Improper control of a resource through its lifetime (664)

3 Incorrect calculation (682)

4 Insufficient control flow management (691)

5 Protection mechanism failure (693)

6 Incorrect comparison (697)

7 Improper check or handling of exceptional conditions (703)

8 Improper neutralization (707)

9 Improper adherence to coding standards (710)

Python

0 SQL

1 Cross site request forgery (XSRF)

2 Command injection

3 Open redirect

4 Remote code execution

5 Cross site scripting (XSS)

6 Path disclosure

flow dependencies to assist fixing. For C/C++ vulnerability dataset, we also used the Joern
(Yamaguchi ) for the construction of data flow dependencies. For Python dataset, we used
the open source tool on GitHub (Python 2021).

5.6.2 RQ2 Implementation

To answer RQ2, we performed a series of ablation tests to understand the impact of each
component. For all the experiments, we used beam size = 10. We removed each component
in turn. We first removed the pointer generator from SPVF. We directly used the “Trans-
former” model with the same hyperparameter with the concatenation of the source code
and its corresponding security properties. Then, to better understand the contribution of the
security properties, we further conducted the experiences only with “Transformer”. We used
the same dictionary for C/C++ dataset and Python dataset with 100 most security-relevant
words. In addition, we conducted several case studies to observe the function of security
property as well as the pointer generator.

5.6.3 RQ3 Implementation

To answer RQ3, we firstly analyzed the categories of vulnerabilities that are frequently fixed
by SPVF. Secondly, we conducted several case studies and investigated the fixes that are
particularly good and poor by the category. By analyzing the data and observing the actual
cases, we try to understand the way that SPVF fixes the vulnerabilities.
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6 Results

6.1 Effectiveness of SPVF (RQ1)

As shown in Table 3, the results are displayed as x/y, where x represents the number of vul-
nerabilities correctly fixed and y represents the number of vulnerabilities with compilable
patches. The results show that SPVF achieves the best performance on both the C/C++ and
Python datasets. On the C/C++ dataset, when beam = 1, SPVF fixes 20 and 22 more vul-
nerabilities compared with SeqTrans and Transformer, respectively, that is, a 13% increase
compared with the state-of-the-art approaches. When beam = 10, SPVF fixes 18 and 27
more vulnerabilities compared with SeqTrans and Transformer, respectively. On the Python
dataset, there is a significant improvement compared with basic Transformer and SeqTrans
with over 70 more vulnerabilities successfully fixed by SPVF. In particular, SPVF outper-
forms SeqTrans by 47% on the test set when beam = 10. And the patches are available on
GitHub.4

The result also demonstrates that SPVF obtains better performance on Python dataset
than on C/C++ dataset. The results might be due to the following two reasons. First, as is
shown in Table 1, the average length of the Python code is shorter than the C/C++ code.
And a shorter length of input tokens enables SPVF to generate the successful patches more
easily. Second, Python is a scripting language that generally has a relatively simple syntax
and semantics (Wikipedia 2021). It might be easier for the NMT models to learn the fixing
patterns, thus yielding higher performance. C/C++ dataset, on the other hand, contains
longer sequences and more complex syntax and semantics.

Both SeqTrans and SPVF are based on Transformer architecture. And SeqTrans and
SPVF use the representation of the source code. The ignorance of security properties and
the difference in integrating the properties into the model might contribute to the reduced
effectiveness of SeqTrans.

Result 1: SPVF outperforms state-of-the-art approaches by 13% for C/C
and 47% for Python. SPVF fixes 153 C/C vulnerabilities and 276 Python
vulnerabilities on the test dataset.

6.2 The Contribution of Each Component

As shown in Table 4, we can see that both the security property and the pointer genera-
tor significantly contribute to SPVF because the performance substantially degrades when
training out of them. For the C/C++ vulnerability test set, there is a 12% improvement
when security property is added to the model and a cumulative 16% improvement when
pointer generator is introduced to integrate the properties. For the Python vulnerability test
set, a significant 30% improvement is witnessed when the security property is added and a
cumulative 64% improvement is observed when the pointer generator is introduced.

Both the security property and the pointer generator are more effective for the Python
dataset, which may be because the Python dataset contains less noise than the C/C++
dataset. We also investigated the actual property security extracted, and we found that
Python security properties are limited to specific words and generally have more indications

4https://github.com/SPVF/SPVF-for-vulnerability-fixing

https://github.com/SPVF/SPVF-for-vulnerability-fixing
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Table 3 Comparison with the state-of-the-art baseline approaches

Approach Beam C/C++ vul. dataset Python vul. dataset

Valid Test Valid Test

Transformer 1 123/696(11.4%) 113/753(10.5%) 157/431(34.6%) 157/441(34.6%)

10 129/702(12.0%) 131/753(12.1%) 170/434(37.5%) 168/444(37.0%)

SeqTrans 1 125/700(11.6%) 122/755(11.3%) 185/442(40.8%) 176/440(38.8%)

10 141/723(13.1%) 135/758(12.5%) 193/443(42.6%) 187/441(41.3%)

SPVF 1 145/832(13.5%) 140/846(13.0%) 247/442(54.5%) 244/445(53.8%)

10 159/843(14.8%) 153/851(14.2%) 280/450(61.8%) 276/451(60.9%)

The results are displayed as x/y, with x the number of bugs correctly fixed and y the number of bugs with
compilable patches. The highest score for each benchmark is in bold

like “add” and “remove”. Many of the C/C++ vulnerability codes require major changes of
the code to fix. By contrast, most of the successful patches only consist of minor changes.
The major changes of the code are obviously out of the capability of SPVF.

Figure 5 is a Python code snippet that cannot be fixed by Transformer. When the security
properties are added, the vulnerability, the code snippet can be fixed. It can be noticed
that the security property contains the words “ssh” and “command injection”, which are
highly relevant to the code snippet. The program might then pay more attention to the “ssh”
command resulting in the successful patching.

Figure 6 shows a C/C++ code snippet that cannot be fixed until the pointer generator is
introduced. Note that the variable name EntrySyncCallbackHelper is an out of vocabulary
word that cannot be generated by predicting using the vocabulary. Models with Pointer
generator successfully patch this vulnerability by generating via pointing, that is to refer to
the class name EntrySyncCallbackHelper in the same sentence.

6.3 Investigation into SPVF’s Patches (RQ3)

Figure 7 shows the number of correct patches over categories in the C/C++ dataset with
the value on the horizontal axis corresponding to the category defined in Table 2. We can

Table 4 The result for the contribution of different Components of SPVF

Model C/C++ vul Python vul

Valid Test Valid Test

Transformer 129/702 131/753 170/434 168/444

Transformer+AST+Security Property 149/822 147/788 253/443 219/441

Transformer+AST+Security Property+Pointer Generator (SPVF) 159/843 153/851 280/450 276/451
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command injection, ssh�

- ssh_cmd = 'svcinfo lsnode -delim ! %s' % node['id']""]
+ ssh_cmd = ['svcinfo', 'lsnode', '-delim', '!', node['id']]""]

Fig. 5 Example of vulnerability only fixed by adding the security property(Python)

observe some conclusions in Fig. 7 that SPVF excels at fixing Improper Access Control
and Incorrect Calculation in C/C++ dataset, Command injection and Cross Site Request
Forgery(XSRF) in Python dataset. In addition, Fig. 8 shows the category that the number
of correct patches over categories in Python dataset with the value on the horizontal axis
corresponds to the category defined in Table 2.

Case Study: Improper Check or Handling of Exceptional Conditions Figure 9 shows a
case of CWE-476, that isNULL Pointer Dereference belonging to category 7, which belongs
to category 7, that is Improper Check or Handling of Exceptional Conditions. From Fig. 7,
we find that Improper Check or Handling of Exceptional Conditions is a category that SPVF
is not good at fixing. And the vulnerability needs the addition of line cdef → ents = 0.
SPVF only manages to generate the result 〈unk〉 = 〈unk〉. It can be seen that SPVF has
already learned the patterns of fixing but failed due to uncertainty of the variable name as
well as the value that needs to be assigned to the variable name. The poor performance of
the vulnerability fixing in this category might be the too many possibilities for the variable
name.

Case Study: Improper Control of a Resource Through its Lifetime The vulnerability in
Fig. 10 belongs to CWE-119, which is Improper Restriction of Operations within the
Bounds of a Memory Buffer - (119) and belongs to Improper Control of a Resource
Through its Lifetime which is a category that SPVF especially excels at fixing for C/C++
vulnerability dataset. After changing the return function by returning another function adop-
tRefWillBeNoop instead of directly returning an object, the code is no longer vulnerable.
It can also be noticed that SPVF successfully predicts the variable name which is not
in the vocabulary via pointing to the source code. And the security properties “bound”,
“CreateFileResult” also give indications about the way of fixing it.

Case Study: Command Injection As is shown in the previous Fig. 5 SPVF excels at fixing
the Python code under the Command injection category. We observe some other examples

Class-2, bound, allow

EntrySync* EntrySync::copyTo(DirectoryEntrySync* parent, const
String& name, ExceptionState& exceptionState) const{
-� �RefPtr helper = EntrySyncCallbackHelper::create();
+� �EntrySyncCallbackHelper*�helper =�
+� � � � � ��EntrySyncCallbackHelper::create();
� � �m_fileSystem->copy(this, parent, name, helper-� � � � �
>successCallback(), helper->errorCallback(),� �
DOMFileSystemBase::Synchronous);
� � �return helper->getResult(exceptionState);
�}

Fig. 6 Example of vulnerability only fixed by integrating with pointer generator (C/C++)
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Fig. 7 The number of correct patch over categories (C/C++), value on the horizontal axis corresponds to
the category defined in Table 2

with similar fixing patterns by removing %s in the code and eliminating the potential hole
that exists in the code. The category Command injection frequently successfully patched
probably because of the relatively common pattern of fixing.

Case Study: Example of Category SQL Being Patched Figure 11 is a vulnerability that
needs to change the content of URL. SPVF performs poorly at fixing Python code under
the SQL category. The reason that Python patches this vulnerability successfully probability
because of the minor change this case involves.

Fig. 8 The number of correct patch over categories(Python), value on the horizontal axis corresponds to the
category defined in Table 2
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CWE-476, overflow pointer dereference stream null cdef allow

static int jp2_cdef_getdata(jp2_box_t *box, jas_stream_t *in)
{
jp2_cdef_t *cdef = &box->data.cdef;
jp2_cdefchan_t *chan;
unsigned int channo;

+�cdef->ents = 0; // SPVF predicts <unk> = <unk>
� ...
� return 0;
}

Fig. 9 Case: wrong prediction for improper check or handling of exceptional conditions

Result 3: SPVF excels at fixing Improper Access Control and Incorrect Calculation
in C/C dataset, Command injection and Cross Site Request Forgery(XSRF) in
Python dataset.

7 Threats to Validity

Internal Threats A threat to internal validity lies in the potential faults in implementing
our approach. To alleviate the threat, our model is based on the fairseq (Ott et al. 2019)
framework to avoid faults in re-implementing. Also, hyperparameter has a huge impact on
the final results. To alleviate this threat, we try several sets of hyperparameters besides the
hyperparameter recommended by the original NMTmodel and use the hyperparameters that
is capable of generating the best result. Another internal threat lies in the re-implementation
of SeqTrans. As sequence-to-sequence model does not need adaptation besides changing
the dataset, the potential threat mainly lies in the different tools for constructing the Data
Flow Graph.

External Threats In our experiment, our model was evaluated on two public datasets. The
datasets regard the committed patch as the correct patch. Therefore, the quality of the pub-
lic datasets is an external threat to validity as it is unpredictable whether this patch does not
introduce new vulnerabilities or whether this patch fails to patch another possible vulnera-
bility. Moreover, in practice, it is uncertain whether SPVF can achieve the same performance
when applying vulnerability localization first to get the vulnerable functions before SPVF
because it depends on the effectiveness of vulnerability localization. In addition, the vulner-
ability description might be low quality as in Exploit Database sometimes only vulnerability

CWE-119,�allow,�bound CreateFileResult

static PassRefPtrWillBeRawPtr<CreateFileResult> create(){
-� � �return new CreateFileResult();
+� � �return adoptRefWillBeNoop(new CreateFileResult());
}
AST: FunctionDef, ReturnStatement, ReturnType, ParameterList...

Fig. 10 Case: improper control of a resource through its lifetime
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SQL, session, login

- resp = requests.get('http://127.0.0.1:5000/profiles')
+ resp =�requests.get('http://127.0.0.1:5000/profile/all')""]
AST: Module, Assign,... , Call..�

Fig. 11 Case:SQL

title and type are provided, thus lowering the performance of SPVF. We then look into the
cases that security property is rather short and mainly contains the category information. It
turns out in the limited datasets we use, the cases with “low quality” descriptions are not
patched significantly worse and some even better. As in Fig. 5, SPVF patches this vulnerable
snippet successfully with merely two words “command injection” and “ssh”.

8 RelatedWork

There are many works on APR based on machine learning techniques (Chen et al. 2021;
Jiang et al. 2021; Lutellier et al. 2020). The survey (Monperrus 2018) gives a comprehensive
overview of program repair techniques. SequenceR (Chen et al. 2021) is a technique for
automatic program repair based on sequence to sequence learning. SequenceR considers
the context of the bugs and uses an encoder/decoder architecture with the copy mechanism
to overcome the unlimited vocabulary problem. CoCoNuT (Lutellier et al. 2020) fixes one-
line bugs using the convolutional neural networks (CNN) along with ensemble learning. In
the architecture CoCoNuT proposed, the input embedding has a different length from the
output embedding because of its architecture consisting of one input encoder, one context
encoder along with one output encoder. Our setup is different from these approaches in that
the vulnerable function is already analyzed and has its corresponding descriptions including
the vulnerability category. Our approach is different from these approaches because we
introduce pointer generator for better integration of the security properties. Also, SPVF
performs the repair at the function level which is different from the line-level patch for
repair.

Several researches for program repair use textual information like compiler error mes-
sage and build error message. Yasunaga and Liang (2020) proposed an approach for
repairing programs from diagnostic feedback. They try to connect symbols relevant to pro-
gram repair in source code and diagnostic feedback with graph neural network applied to
reasoning and then present a self-supervised learning paradigm for program repair. The
difference between their work and ours is the way of incorporating the information into
the model. Mesbah et al. (2019) proposed a system called DeepDelta that uses diagnostic
information for training the Neural Machine Translation Network. Tarlow et al. (2020) pro-
posed Graph2Tocopo which represents the source code, build configuration and compiler
diagnostic messages as a graph and predict the diff by feeding the graph into the Graph Neu-
ral Network. Abhinav et al. (2021) proposed the RepairNet that uses both code and error
messages to repair the program.

For vulnerability fixing, Senx (Huang et al. 2019) uses a set of security properties. They
detect the security property violated by the vulnerability input and generates a correspond-
ing patch. Senx only deals with specific class of vulnerability namely integer overflow,
buffer overflow and bad cast. The definition for security property in Senx is different from
ours in that they refer security property as the techniques relevant to loop cloning and access
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range analysis in the process of dealing with vulnerabilities. In addition, SPVF is based on
the neural machine learning approaches instead of the designed rules which are used by the
Senx.

Harer et al. (2018) investigated the feasibility of using generative adversarial networks
(GAN) to fix the software vulnerabilities. Unlike Transformer-based architectures, GAN
is not originally built for the task of translation. Yet the authors proposed a loss function
especially for NMT tasks in order to tailor the GAN more suitable for the task. Chen et al.
(2022) proposed an approach for repairing security vulnerabilities named VRepair which is
based on transfer learning. Instead of using the vulnerabilities as training dataset, VRepair
is trained on a large bug fix corpus and tuned on a vulnerability fix dataset.

SeqTrans is a tool for automatic vulnerability fixing via sequence to sequence learn-
ing (Chi et al. 2020). They proposed to leverage data flow dependencies to construct code
sequences and fed them into the Transformer model. The work by Chen et al. (2019) also
fixes C vulnerabilities using sequence to sequence learning. Both of the works are based on
Transformer. The main difference between their work and ours is that we consider security
properties.

9 Conclusion and FutureWork

In this paper, we propose a novel approach for automatic vulnerability fixing, called SPVF.
SPVF is based on the attention mechanism and extends the attention mechanism with secu-
rity properties. SPVF makes use of the security properties extracted from the CWE category
as well as the natural language description, integrating them with the pointer generator.
We evaluated our approach on two datasets. The experimental results show that SPVF out-
performs state-of-the-art approaches by 13% for C/C++ and 47% for Python. The further
evaluation shows that security property plays a key role in assisting vulnerability fixing and
the pointer generator is capable of integrating and utilizing the security properties.

Future Work Our approach uses the “exact same” criterion for evaluation which is not
suitable in some cases. We find the case that SPVF fails for not being exactly the same as
the target code while it is capable of fixing the vulnerability in a correct way. We would
like to explore a more fair way of evaluating approaches to fix the vulnerabilities. Also, we
would like to explore more ways of representing code, like the code property graph (CPG)
(Yamaguchi et al. 2014).
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