
A Systematic Literature Review on Explainability for
ML/DL-based Software Engineering

SICONG CAO, Yangzhou University, Yangzhou, China
XIAOBING SUN, Yangzhou University, Yangzhou, China
RATNADIRA WIDYASARI, Singapore Management University, Singapore, Singapore
DAVID LO, Singapore Management University, Singapore, Singapore
XIAOXUE WU, Yangzhou University, Yangzhou, China
LILI BO, Yangzhou University, Yangzhou, China
JIALE ZHANG, Yangzhou University, Yangzhou, China
BIN LI, Yangzhou University, Yangzhou, China
WEI LIU, Yangzhou University, Yangzhou, China
DI WU, University of Southern Queensland, Toowoomba, Australia
YIXIN CHEN,Washington University in St Louis, St Louis, United States

The remarkable achievements of Artificial Intelligence (AI) algorithms, particularly in Machine Learning (ML)
and Deep Learning (DL), have fueled their extensive deployment across multiple sectors, including Software
Engineering (SE). However, due to their black-box nature, these promising AI-driven SE models are still far
from being deployed in practice. This lack of explainability poses unwanted risks for their applications in
critical tasks, such as vulnerability detection, where decision-making transparency is of paramount importance.
This article endeavors to elucidate this interdisciplinary domain by presenting a systematic literature review of
approaches that aim to improve the explainability of AI models within the context of SE. The review canvasses
work appearing in the most prominent SE and AI conferences and journals, and spans 108 articles across
23 unique SE tasks. Based on three key Research Questions (RQs), we aim to (1) summarize the SE tasks

This work is supported by the National Natural Science Foundation of China (No. 62572421, No. 62002309, No. 62202414);
China Postdoctoral Science Foundation (No. 2025T180438); the Jiangsu “333” Project; the Open Project of Industry-Education
Integration Innovation Center of Specialized Cybersecurity (Yangzhou University, No. YZUCSC2025KF02); the Open
Foundation of Yunnan Key Laboratory of Software Engineering (No. 2023SE201), and the National Research Foundation,
under its Investigatorship Grant (NRF-NRFI08-2022-0002). Any opinions, findings and conclusions or recommendations
expressed in this material are those of the author(s) and do not reflect the views of National Research Foundation, Singapore.
Authors’ Contact Information: Sicong Cao, Yangzhou University, Yangzhou, Jiangsu, China and Industry-Education
Integration Innovation Center of Specialized Cybersecurity (Yangzhou University), Yangzhou, Jiangsu, China; e-mail:
DX120210088@yzu.edu.cn; Xiaobing Sun (corresponding author), Yangzhou University, Yangzhou, Jiangsu, China; e-
mail: xbsun@yzu.edu.cn; Ratnadira Widyasari, Singapore Management University, Singapore, Singapore, Singapore; e-
mail: ratnadiraw.2020@phdcs.smu.edu.sg; David Lo, Singapore Management University, Singapore, Singapore; e-mail:
davidlo@smu.edu.sg; Xiaoxue Wu, Yangzhou University, Yangzhou, Jiangsu, China; e-mail: xiaoxuewu@yzu.edu.cn;
Lili Bo, Yangzhou University, Yangzhou, Jiangsu, China and Yunnan Key Laboratory of Software Engineering, Kun-
ming, Yunnan, China; e-mail: lilibo@yzu.edu.cn; Jiale Zhang, Yangzhou University, Yangzhou, Jiangsu, China; e-mail:
jialezhang@yzu.edu.cn; Bin Li, Yangzhou University, Yangzhou, Jiangsu, China; e-mail: lb@yzu.edu.cn; Wei Liu, Yangzhou
University, Yangzhou, Jiangsu, China; e-mail: weiliu@yzu.edu.cn; Di Wu, University of Southern Queensland, Toowoomba,
Queensland, Australia; e-mail: di.wu@unisq.edu.au; Yixin Chen, Washington University in St Louis, St Louis, Missouri,
United States; e-mail: chen@cse.wustl.edu.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM 0360-0300/2025/10-ART95
https://doi.org/10.1145/3763230

ACM Comput. Surv., Vol. 58, No. 4, Article 95. Publication date: October 2025.

https://orcid.org/0000-0003-3688-4437
https://orcid.org/0000-0001-5165-5080
https://orcid.org/0000-0001-8190-5458
https://orcid.org/0000-0002-4367-7201
https://orcid.org/0009-0009-5432-651X
https://orcid.org/0000-0002-7267-4923
https://orcid.org/0000-0002-2143-5666
https://orcid.org/0000-0001-8500-9917
https://orcid.org/0000-0001-8503-4063
https://orcid.org/0000-0002-4753-8161
https://orcid.org/0000-0002-3704-4432
mailto:permissions@acm.org
https://doi.org/10.1145/3763230
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3763230&domain=pdf&date_stamp=2025-10-25

95:2 S. Cao et al.

where XAI techniques have shown success to date; (2) classify and analyze different XAI techniques; and
(3) investigate existing evaluation approaches. Based on our findings, we identified a set of challenges remaining
to be addressed in existing studies, together with a set of guidelines highlighting potential opportunities we
deemed appropriate and important for future work.

CCS Concepts: • General and reference→ Surveys and overviews; • Computing methodologies→ Neural
networks; Artificial intelligence; • Software and its engineering→ Software development techniques;

Additional Key Words and Phrases: Explainable AI, XAI, interpretability, neural networks, survey

ACM Reference Format:
Sicong Cao, Xiaobing Sun, Ratnadira Widyasari, David Lo, Xiaoxue Wu, Lili Bo, Jiale Zhang, Bin Li, Wei Liu,
Di Wu, and Yixin Chen. 2025. A Systematic Literature Review on Explainability for ML/DL-based Software
Engineering. ACM Comput. Surv. 58, 4, Article 95 (October 2025), 34 pages. https://doi.org/10.1145/3763230

1 Introduction
Software Engineering (SE) is a discipline that deals with the design, development, testing, and
maintenance of software systems. As software continues to pervade a wide range of industries,
diverse and complex SE data, such as source code, bug reports, and test cases, have grown to
become unprecedentedly large and complex. Driven by the success of Artificial Intelligence (AI)
algorithms in various research fields, the SE community has shown great enthusiasm for exploring
and applying advanced Machine Learning (ML)/Deep Learning (DL) models to automate or
enhance SE tasks typically performed manually by developers, including automated program repair
[50, 128], code generation [70], and vulnerability detection [8, 176]. A recent report from the 2021
SEI Educator’s Workshop has referred to AI for Software Engineering (AI4SE) as an umbrella
term to describe research that uses AI algorithms to tackle SE tasks [95].

Despite the unprecedented performance achieved by ML/DL models with higher complexity,
they have been slow to be deployed in the SE industry. This reluctance arises due to prioritizing
accuracy over Explainability—AI systems are notoriously difficult to understand for humans
because of their complex configurations and large model sizes [42]. From the perspective of the
model user, explainability is needed to establish trust when imperfect “black-box” models are used.
For instance, a developer may seek to comprehend the rationale behind a DL-based vulnerability
detection model’s decision, i.e., why it predicts a particular code snippet as vulnerable, to facilitate
analyzing and fixing the vulnerability [93, 166]. For the model designers, explainability is required to
investigate failure cases and direct the weak AImodels in the proper paths as intended [127]. In other
words, merely a simple decision result (e.g., a binary classification label) without any explanation is
often not good enough. This fact stimulates the urgent demand for designing algorithms capable of
explaining the decision-making process of black-box AI models, leading to the creation of a novel
research topic termed eXplainable AI (XAI) [29].
Our Work. To effectively chart the most promising path forward for research on the explainability
for AI4SE, we conducted a Systematic Literature Review (SLR) to bridge this gap, providing
valuable insights to the community. In particular, we followed the standardized practice suggested
by Zhang et al. [165], which included three main steps: (¶) designing search strategies; (·) study
selection; and (¸) data extraction and analysis. Due to space limitations, we detailed each step of
our SLR and results online as supplementary materials.1 As a result, we examined 108 primary
studies published in 27 flagship conferences and journals over the last 13 years (2012–2024). In this
article, we focused on investigating the following ResearchQuestions (RQs):

1https://github.com/RISS-Vul/xai4se-paper/blob/master/Appendix.pdf

ACM Comput. Surv., Vol. 58, No. 4, Article 95. Publication date: October 2025.

https://doi.org/10.1145/3763230
https://github.com/RISS-Vul/xai4se-paper/blob/master/Appendix.pdf

A Systematic Literature Review on Explainability for ML/DL-based Software Engineering 95:3

—RQ1: What types of AI4SE studies have been explored for explainability?
Findings: (1) Primary studies can be categorized into 23 unique SE tasks across five major
activities within software development life cycle; (2) Early studies predominantly concentrated
on traditional classification tasks like Bug/Defect Prediction. Since 2021, researchers have turned
their attention to a greater number of more complex SE tasks; (3) While there has been a recent
wealth of work, there are still underrepresented topics in software requirements and design and
software management that should be considered by the SE community, suggesting a potential
area of focus for future research in this field.

—RQ2: How XAI techniques are used to support SE tasks?
– RQ2𝑎: What types of XAI techniques are employed to generate explanations?
– RQ2𝑏: What format of explanation is provided for various SE tasks?
Findings: (1) Existing XAI techniques for SE tasks are mainly developed along five directions,
including Out-of-the-Box Toolkit (OT), Interpretable Model (IM), Domain Knowledge
(DK), Attention Mechanism (AM), as well as a set of other highly tailored approaches. The
most popular of the five being OT, contributing ≈34% of our surveyed studies; (2) Key factors
guiding the selection encompass Task Fitness, Model Compatibility, and Stakeholder Preference;
(3) A number of explanation formats have been explored in our surveyed studies, with the main
formats utilized being Numeric, Text, Visualization, Source Code, and Rule. They were often tightly
associated with a given SE task.

—RQ3: How well do XAI techniques perform in supporting various SE tasks?
– RQ3𝑎: What baseline techniques are used to evaluate XAI4SE approaches?
– RQ3𝑏: What benchmarks are used for these comparisons?
– RQ3𝑐: What evaluation metrics are employed to measure XAI4SE approaches?
Findings: (1) In light of a notable scarcity of well-documented and reusable baselines or bench-
marks, approximately 28.7% of the benchmarks employed in the evaluations of our studied ap-
proaches were self-generated, with a significant portion not being publicly accessible or reusable;
(2) There is no consensus on evaluation strategies for XAI4SE studies, and in many cases, the
evaluation is only based on specific properties, such as correctness and coherence, or researchers’
subjective intuition of what constitutes a good explanation.

Contributions.We anticipate that our findingswill be instrumental in guiding future advancements
in this rapidly evolving field. This study makes the following contributions:

—We present a systematic review of recent 108 primary studies on the topic of explainability for
ML/DL-based SE, and pinpoint several potential directions for researchers and practitioners.

—We describe the key applications of XAI4SE encompassing a diverse range of 23 unique SE
tasks, grouped into five core SE activities within software development life cycle.

—We synthesize a taxonomy of XAI techniques used in SE from an integration perspective, and
analyze frequently used formats of explanation.

—We summarize common evaluation means adopted by XAI4SE research, including available
baselines, prevalent benchmarks, and commonly employed evaluation metrics, to determine
their validity.

—We discuss key challenges that using XAI techniques encounters within the SE field, and
provide several practical guidelines for future research.

—Wemaintain an interactive website, https://riss-vul.github.io/xai4se-paper/, with all of our data
and results for reproducibility, and encourage contributions from the community to continue
to push forward XAI4SE research.

Comparison with Existing Surveys. Recently, the SE community has embarked on a series of
research activities regarding explainability, where several existing literature reviews or surveys

ACM Comput. Surv., Vol. 58, No. 4, Article 95. Publication date: October 2025.

https://riss-vul.github.io/xai4se-paper/

95:4 S. Cao et al.

Table 1. Comparison of Our Work with Previous Surveys/Reviews on Explainability for AI4SE Research

Reference Studied Model Scope # Articles Taxonomy Evaluation† GuidelineBaseline Benchmark Metric
Mohammadkhani et al. [85] ML and DL -2022 24 General # G# G# #
Yang et al. [155] CodeLMs 2019–2023 146 (16) General # # # #
Our survey ML and DL (+LLM) 2012–2024 108 Customized

†# denotes not cover, G# denotes partial cover, and denotes fully cover.

[85, 155] have been produced, as summarized in Table 1. Mohammadkhani et al. [85] conducted a
seminal survey on explainable AI for SE research. They primarily focus on the explainability of
AI4SE models over the which, the what, and the how dimensions, i.e., which SE tasks are being
explained, what types of XAI techniques are adopted, and how they are evaluated. Yang et al. [155]
reviewed 146 studies to investigate how non-functional properties of Code Language Models
(CodeLMs), including robustness, security, privacy, explainability, efficiency, and usability, were
evaluated and enhanced. Despite the similarity in terms of the high-level topic, there remain some
fundamental differences. First, they either focused narrowly on a single model architecture (e.g.,
CodeLMs) or only analyzed a small fraction of relevant literature published until June 2022. As
a result, insights derived from them may not be generalizable to all AI4SE solutions, or may not
keep pace with the ongoing development of the community. Second, they directly borrowed the
general taxonomy, i.e., ante- and post-hoc explanation, from the XAI field to classify explanation
techniques in SE tasks. This taxonomy is coarse-grained and may not be applicable to stakeholders
with distinct objectives and expertise. Third, they did not (or only partially) explicitly discuss
the evaluation aspects of reviewed articles, including available baselines, prevalent benchmarks,
and commonly employed evaluation metrics. The lack of comprehensive evaluation may pose
obstacles to readers interested in deploying XAI techniques in practical SE scenarios. Overall,
by systematically reviewing publications from 2012 to 2024, spanning 13 years of research, we
synthesize a detailed research roadmap of past work on XAI4SE, complete with identified open
challenges and best guidelines for applying XAI techniques to SE tasks.
Article Organization. The remainder of this article is structured as follows: Section 2 describes
the preliminaries of XAI. The succeeding Sections 3–5 are devoted to answering each of these RQs
individually. Section 6 discusses the challenges that still need to be solved and points out potential
research opportunities. Section 7 outlines guidelines for conducting future work on XAI4SE based
upon the findings of our SLR. Section 8 concludes this article.

2 XAI: Preliminaries
This section first details several critical terminologies commonly used in the XAI field. Then, we
offer a general overview of the taxonomy of XAI approaches, aiming to furnish the reader with a
solid comprehension of this topic.

2.1 Definition
The greatest challenge in establishing the concept of XAI in SE is the ambiguous definition of
interpretability and explainability. Those terms, together with interpretation and explanation, are
often used interchangeably in the literature [7, 89]. For example, quoting Doshi-Velez and Kim et al.
[28], interpretability is the ability “to explain or to present in understandable terms to a human.” By
contrast, according to Lent et al. [130], an explainable AImeans it can “present the user with an easily
understood chain of reasoning from the user’s order, through the AI’s knowledge and inference, to
the resulting behavior.” Some argue that the terms are closely related but distinguish between them,
although there is no consensus on what the distinction exactly is [3, 91]. To ensure that we do not
exclude work because of different terminologies, we equate them (and use them interchangeably) to

ACM Comput. Surv., Vol. 58, No. 4, Article 95. Publication date: October 2025.

A Systematic Literature Review on Explainability for ML/DL-based Software Engineering 95:5

keep a general, inclusive discussion regardless of this debate. In this survey, we frame explanations
in the context of SE research using ML/DL and adopt the phrasing of Dam et al. [20] as follows:

Definition 1. Explainability or Interpretability of an AI-powered SE model measures the
degree to which a human observer can understand the reasons behind its decision (e.g. a
prediction).

Under this context, there are two distinct ways of achieving explainability: (¶) making the
entire decision-making process transparent and comprehensible (i.e., white-box/IMs); and (·)
explicitly providing an explanation for each decision (i.e., surrogate models). In addition, since SE
is task-oriented, explanations in SE tasks should be viewed from a perspective that values practical
use [146]. As we observed in Section 4.2, there are multiple legitimate types of explanations for SE
practitioners who have different intents and expertise.

2.2 Taxonomy

Filter by page
limit (pages > 6)

Research
Question

AI4SE
Activity

Explanation
Techniques

21 Selected
conferences

6 Selected
journals

119 papers 14 papers

21 Selected
conferences

6 Selected
journals

119 papers 14 papers

Manual Search
Identify

relevant venues

Automated Search

IEEE Xplore ACM Digital
Library SpringerLink Wiely Scopus Web of

Science
Google
Scholar

305 papers 2,822 papers 23,696 papers 2,214 papers 35,407 papers 281 papers 27,925 papers

Automated Search

IEEE Xplore ACM Digital
Library SpringerLink Wiely Scopus Web of

Science
Google
Scholar

305 papers 2,822 papers 23,696 papers 2,214 papers 35,407 papers 281 papers 27,925 papers
Derive

search strings

Refine
search
strings

Export

Ev
al

ua
te

C
om

pl
em

en
t

92,783
papers
92,783
papers

Export

Export

Add 11
papers
Add 11
papers

29 papers29 papers

Study selection

Manual Search

Forward Backward

6 papers 23 papers

Forward Backward

6 papers 23 papers

Total 108 papers

Study Identification

Remove
duplicate studies

Check the venue,
title, and abstract

Scan full-text to select
primary studies

Conduct quality
assessment

Study Selection

34,652 papers 23,508 papers 494 papers 143 papers 97 papers

Anchor

SHAP

Backtracking

Counterfactuals

LIME

SmoothGrad

LLM

BreakDown

Decision Tree

Grad-CAM

RuleFit

Naïve Bayes

Explanation
Techniques for
AI4SE Studies

Multi-Head
Attention

GNN-Explainer

Self-Attention

Multi-Modal
Attention

Explanations
for AI4SE
Pipelines

Explanations
for AI4SE
Pipelines

Model-Dependent Techniques

Counterfactual
Explanation

Structural
Analysis

Casual
Inference

LIME SHAP BreakDownDeepLIFT

GradCAM Rule InductionDelta Debugging

Neuron Activation Difference

Model-Agnostic Techniques

GNNExplainer

GNN-LRP PGExplainer

SubgraphX

Decision Tree

Attention
Mechanism

Random
Forest

Self-Explainable Techniques

Graph Tensor Convolution
Neural Network

Feature
Backtracking

Neural Machine
Translation

Specification
Mining

Knowledge
Graph/Base

BERT Multi-Task Learning

Tailored Techniques

 14 src/mongo/shell/linenoise.cpp

 @@ -2762,7 +2762,17 @@ int linenoiseHistorySetMaxLen(int len) {

 # Get the HTML fragment inside the appropriate HTML element and then
 # extract the text from it.
 html_frag = extract_text_in(html, u"<div class='lyricbox'>")
- lyrics = _scrape_strip_cruft(html_frag, True)
+ if html_frag:
+ lyrics = _scrape_strip_cruft(html_frag, True)

- if lyrics and 'Unfortunately, we are not licensed' not in lyrics:
- return lyrics
+ if lyrics and 'Unfortunately, we are not licensed' not in lyrics:
+ return lyrics

347 347
348 348
349 349
350
 350
 351
351 352
352
353
 353
 354

 14 src/mongo/shell/linenoise.cpp

 @@ -2762,7 +2762,17 @@ int linenoiseHistorySetMaxLen(int len) {

 /* Save the history in the specified file. On success 0 is returned
 * otherwise -1 is returned. */
 int linenoiseHistorySave(const char* filename {
- FILE&* fp = fopen(filename, "wt");
 if (fp == NULL) {
 return -1;
 }

 for (int j = 0; j < historyLen; ++j) {
 if (history[j][0] != '\0') {
 fprintf(fp, "%s\n", history[j]);
 }
 }
- fclose(fp);
 return 0;
 }

2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777

 CVE-2016-6494 Detail
Description
The client in MongoDB uses world-readable permissions on .dbshell history
files, which might allow local users to obtain sensitive information by reading
these files.

Weakness Enumeration
CWE-ID CWE Name

CWE-200 Exposure of Sensitive Information to an Unauthorized Actor

CWE-ID CWE Name

CWE-200 Exposure of Sensitive Information to an Unauthorized Actor

VulTeller
The FILE before VERSION does not verify that use ofthe permissions on
history files, allows local guest to read sensitive information by reading these
files.

 14 src/mongo/shell/linenoise.cpp

 @@ -2762,7 +2762,17 @@ int linenoiseHistorySetMaxLen(int len) {

 /* Save the history in the specified file. On success 0 is returned
 * otherwise -1 is returned. */
 int linenoiseHistorySave(const char* filename {
- FILE&* fp = fopen(filename, "wt");
 if (fp == NULL) {
 return -1;
 }

 for (int j = 0; j < historyLen; ++j) {
 if (history[j][0] != '\0') {
 fprintf(fp, "%s\n", history[j]);
 }
 }
- fclose(fp);
 return 0;
 }

2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777

 CVE-2016-6494 Detail
Description
The client in MongoDB uses world-readable permissions on .dbshell history
files, which might allow local users to obtain sensitive information by reading
these files.

Weakness Enumeration
CWE-ID CWE Name

CWE-200 Exposure of Sensitive Information to an Unauthorized Actor

VulTeller
The FILE before VERSION does not verify that use ofthe permissions on
history files, allows local guest to read sensitive information by reading these
files.

XAI Techniques

Scope
Where is the XAI

approach focusing on?

Stage
How is the XAI

approach developed?

Portability
What is the

application scenario?

Local

Global

Ante-Hoc

Post-Hoc

Model-
Specific

Model-
Agnostic

time_days

last_state

>13.9

num_fix_files

<=13.9

time_days

Verified
Fixed

ReopenedReopened

Resolved
Fixed

Assigned
Fixed

� � �

���

Reopened

<=21.3

time_days

>21.3

Not ReopenedReopened

<=65.1>65.1

Reopened

>4

num_fix_files

<=4

Not Reopened

>2

time_days

<=2

Not Reopened

>7.25

� � �

<=7.25

Out-of-the-
Box Toolkit

(~34%)

Attention
Mechanism

(~10%)

Conceptual
Model

Semantic
Matching

Information
Retrieval

Specifications
Synthesis

Delta
Debugging

Auxiliary
TaskKnowledge

Graph

Linear
Regression

Rule
Induction

Formal
Reasoning

Others
(~13%)

Causal
Inference

Domain
Knowledge

(~20%)

FFT

Interpretable
Models
(~23%)

WheaCha

Probing

COMM 11.00

CountClassBase 8.0

CountOutput_Min 0.00

DDEV 3.00

CountClassDerived 2.0

Feature Value

IF Del. Lines=40 & Entropy=0.97 & #Dev=3 THEN predict=TRUE

IF Entropy=0.97 THEN predict=TRUE

Rule1

Rule2

 14 src/mongo/shell/linenoise.cpp

 @@ -2762,7 +2762,17 @@ int linenoiseHistorySetMaxLen(int len) {

 int linenoiseHistorySave(const char* filename {
 FILE&* fp = fopen(filename, "wt");
 if (fp == NULL) {
 return -1;
 }
 for (int j = 0; j < historyLen; ++j) {
 if (history[j][0] != '\0') {
 fprintf(fp, "%s\n", history[j]);
 }
 }
 fclose(fp);
 return 0;
 }

2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777

 CVE-2016-6494 Detail
Description
The client in MongoDB uses world-readable permissions on .dbshell history
files, which might allow local users to obtain sensitive information by reading
these files.

Weakness Enumeration
CWE-ID CWE Name

CWE-200 Exposure of Sensitive Information to an Unauthorized Actor

CWE-ID CWE Name

CWE-200 Exposure of Sensitive Information to an Unauthorized Actor

VulTeller
The FILE before VERSION does not verify that use ofthe permissions on
history files, allows local guest to read sensitive information by reading these
files.

VulTeller
The FILE before VERSION does not verify that use ofthe permissions on
history files, allows local guest to read sensitive information by reading these
files.

Prediction Label: Vulnerable

Explainable AI for Software Engineering Guidelines
A Checklist

 Not su itable
for practical u se

AI4SE
Solu tion

AI4SE
Solu tion

Guideline 1
R equ irement

Analysis

Guideline 2
Approach
Selection

Guideline 3
Mu lti-Dimensional

Evalu ation

Guideline 4
Feedback-Driven

Optimization

Guideline 5
Legal and Ethical

Considerations

Passed Mostly Passed Not Passed Not Passed Partially Passed

Su itable for
practical u se

Fig. 1. General taxonomy of the survey in terms of
scope, stage, and portability.

Taxonomy is a useful tool to get an overview of
the emerging field. Based on the previous litera-
ture [119], most XAI approaches can be catego-
rized according to three criteria: (¶) scope (lo-
cal vs. global); (·) stage (ante-hoc vs. post-hoc);
(¸) and portability (model-specific vs. model-
agnostic), as illustrated in Figure 1.
Classification by Scope. The scope of explana-
tions can be categorized as either local or global
(some approaches can be extended to both) ac-
cording to whether the explanations provide in-
sights about the model functioning for the general data distribution or for a specific data sample,
respectively. Local explainability approaches, such as LIME [108] and SHAP [78], seek to explain
why a model performs a specific prediction for an individual input. Global explainability approaches
work on an array of inputs to give insights into the overall behavior of the black-box model. Various
rule-based models such as decision trees are in this category.
Classification by Stage. XAI can be categorized based on whether the explanation mechanism
is inherent within the model’s internal architecture or is implemented following the model’s
learning/development phase. The former is named ante-hoc explainability (also known as intrinsic
explainability or self-explainability), while the latter refers to post-hoc explainability. Most inherently
interpretable approaches are model-specific such that any change in the architecture will need
significant changes in the approach itself. By contrast, post-hoc approaches typically operate by
perturbing parts of the data in a high-dimensional vector space to discern the contributions of
various features to the model’s predictions, or by analytically ascertaining the influence of different
features on the prediction outcomes.
Classification by Portability. According to the models they can be applied to, explanation
approaches can be further classified asmodel-specific andmodel-agnostic. Model-specific approaches
require access to the internal model architecture, meaning that they are restricted to explain only
one specific family of models. Conversely, model-agnostic approaches can be used to explain
arbitrary models without being constrained to any particular model architecture. Unlike other
works that focus on underlying models and architectures, in this SLR, we design our taxonomy

ACM Comput. Surv., Vol. 58, No. 4, Article 95. Publication date: October 2025.

95:6 S. Cao et al.

Table 2. Distribution of SE Tasks over Five SE Activities

SE Activity SE Task (# Articles) References
Software Requirements
and Design (Section 3.1.1) Requirement Classification (1) [19]

Software Development
(Section 3.1.2)

Code Understanding (11) [4, 17, 66, 81, 90, 97, 104, 109, 134, 139, 153]
Program Synthesis (7) [12, 21, 30, 58, 73, 92, 94]

Code Summarization (3) [38, 51, 98]
Code Search (2) [133, 135]

API Recommendation (1) [47]

Software Testing
(Section 3.1.3)

Test Case-Related (5) [2, 54, 57, 124, 161]
Debugging (4) [16, 39, 55, 60]

Vulnerability Detection (14) [9, 13, 15, 34, 46, 65, 75, 93, 123, 127, 166, 170, 175, 177]
Bug/Fault Localization (3) [56, 143, 144]

Software Maintenance
(Section 3.1.4)

Program Repair (2) [6, 83]
Malware/Anomaly Detection (12) [45, 63, 64, 68, 72, 74, 79, 137, 147, 164, 172, 173]

Bug/Defect Prediction (19) [11, 26, 36, 37, 52, 53, 61, 69, 82, 87, 102, 103, 105, 117, 140, 151, 152, 162, 174]
OSS Sustainability Prediction (1) [149]

Root Cause Analysis (5) [24, 67, 106, 125, 156]
Code Review (2) [113, 154]

Code Smell Detection (6) [48, 107, 129, 136, 138, 159]
Code Clone Detection (1) [1]
Bug Report-Related (5) [23, 44, 59, 114, 116]

Software Management
(Section 3.1.5)

Mining Software Repositories (1) [71]
Configuration Extrapolation (1) [25]

Effort/Cost Estimation (1) [35]
Developer Recommendation (1) [150]

criteria with greater emphasis on the integration perspective of XAI and SE (Section 4.1), making
them better suited to the requirements of the SE community.

3 RQ1: What Types of AI4SE Studies Have Been Explored for Explainability?
This RQ aims to investigate the application scenarios of XAI techniques in helping improve the
explainability of various AI4SE models. In total, we identified 23 separate SE tasks where an XAI
technique had been applied. These tasks span across five main phases of Software Development
Life Cycle (SDLC) [112]. The full taxonomy is displayed in Table 2, which associates the relevant
primary study paired with the SE task and activity it belongs to.

3.1 How XAI Are Used in Specific SE Tasks?
In this subsection, we delved into the progress of various SE tasks2 that applied XAI techniques. By
investigating this RQ, we aimed to obtain a clear understanding of what has been done and what
else can be done.

3.1.1 SE Tasks in Software Requirements and Design. Software requirements refer to specific
descriptions of conditions or capabilities needed by users, systems, or system components, while
software design involves the process of defining the structure, components, functionalities, in-
terfaces, and their relationships within a software system. During this phase, only one topic, i.e.,
Requirement Classification, is explored, leaving ample space for further exploration.
Requirement Classification. As a key example of ML applied to requirements engineering,
requirement classification aims to categorize software requirements into different classes or types,
such as functional and non-functional requirements. Dalpiaz et al. [19] constructed ML classifiers
based on more general linguistic features (e.g., dependency types), and leveraged modern rule-based
XAI tools to identify those features that appeared commonly and that helped distinguish functional
and quality aspects.

2Due to the page limit, we only detail the most representative task in each phase. The complete version can be found in our
supplementary materials online.

ACM Comput. Surv., Vol. 58, No. 4, Article 95. Publication date: October 2025.

A Systematic Literature Review on Explainability for ML/DL-based Software Engineering 95:7

3.1.2 SE Tasks in Software Development. There are wide-ranging applications of XAI techniques
in software development, encompassing tasks such as Code Understanding, Program Synthesis, and
Code Summarization.
Code Understanding. Code understanding refers to the process of comprehending and analyzing
source code deeply. Within the context of data-driven SE research, code understanding aims to seek
an effective way to map source code into high-dimensional semantic space, thereby supporting a
variety of code-centric downstream tasks. Inspired by the capability of complex AI models, deep
neural networks in particular, in learning rich representations of raw data, a series of code models
are trained on labeled (e.g., CodeSearchNet [49]) or unlabeled code corpus (e.g., CodeXGlue [76]).
This training process produces code embeddings with rich contexts and semantics. Yang et al. [153]
proposed Graph Tensor Convolution Neural Network (GTCN), a novel code representation
learning model which is capable of comprehensively capturing the distance information of code
sequences and structural code semantics, to generate accurate code embeddings. GTCN was self-
explainable because the tensor-based model reduced model complexity, which was beneficial for
capturing the data features from the simpler model space. Wan et al. [134] proposed three types of
structural analysis, including attention analysis, probing on the word embedding, and syntax tree
induction, to explore why the pre-trained language models work and what they indeed capture in
SE tasks.

3.1.3 SE Tasks in Software Testing. Within the context of software testing, we found versatile
applications of XAI techniques across a spectrum of tasks, including Test Case-Related Automation,
Debugging, Vulnerability Detection, and Bug/Fault localization.
Vulnerability Detection. Software vulnerabilities, sometimes called security bugs, are weaknesses
in an information system, security procedures, internal controls, or implementations that could be
exploited by a threat actor for a variety of malicious ends. As such weaknesses are unavoidable
during the design and implementation of the software, and detecting vulnerabilities in the early
stages of the software life cycle is critically important. Benefiting from the great success of DL in
code-centric SE tasks, an increasing number of learning-based vulnerability detection approaches
have been proposed. To reveal the decision logic behind the binary detection results (vulnerable
or not), most efforts focus on searching for important code tokens that positively contribute to
the model’s prediction. For example, Li et al. [65] leveraged GNNExplainer [160] to simplify the
target instance to a minimal PDG sub-graph consisting of a set of crucial statements along with
program dependencies while retaining the initial model prediction. Additionally, several approaches
turn to providing explanatory descriptions to help security analysts understand the key aspects of
vulnerabilities, including vulnerability types [34], root cause [123], similar vulnerability reports
[93], and so on. Zhou et al. [175] proposed a novel contrastive learning framework based on a
combination of unsupervised and supervised data augmentation strategy to train a function change
encoder, and further fine-tuned three downstream tasks to identify not only silent vulnerability
fixes, but also corresponding vulnerability types and exploitability rating.

3.1.4 SE Tasks in Software Maintenance. Software maintenance is the process of changing,
modifying, and updating software to keep up with customer needs. The applications of XAI in
software maintenance are diverse, including Malware/Anomaly Detection, Bug/Defect Prediction,
Root Cause Analysis, Code Smell Detection, Bug Report-Related Automation, and so on.
Bug/Defect Prediction. In the past few years, defect prediction is the most extensive and active
research topic in software maintenance. According to different granularities, these studies can be
further classified into two categories: file-level and commit-level (also known as Just-In-Time
(JIT)) defect prediction. File-level defect prediction techniques often employ a set of hand-crafted

ACM Comput. Surv., Vol. 58, No. 4, Article 95. Publication date: October 2025.

95:8 S. Cao et al.

Software
Testing
24.1%

Software
Management
3.7%

Software
Maintenance
49.1%

Software
Requirements
& Design
0.9%

Software
Development
22.2%

(a) Distribution of XAI4SE studies in different
SE activities.

Case Study
1.9%

Empirical
Study
18.5%

New Technique
78.7%

Replication
Study
0.9%

(b) Distribution of main contributions in dif-
ferent XAI4SE studies.

Fig. 2. Distribution of XAI4SE studies across different SE activities and contribution types.

feature metrics extracted from a software product to construct the classification model. For instance,
Yang et al. [152] proposed a weighted association rule based on the contribution degree of features
to optimize the process of rule generation, ranking, pruning, and prediction. By contrast, JIT
defect prediction task aims to help developers prioritize their limited energy and resources on the
most risky commits that are most likely to introduce defects. Zheng et al. [174] trained a random
forest classifier based on six open-sourced projects as a JIT defect prediction model, and adopted
LIME to identify crucial features. The evaluation experiments showed that the classifier trained
on the five most important features of each project could achieve 96% of the original prediction
accuracy.

3.1.5 SE Tasks in Software Management. There are four literature involving the utilization of XAI
in software management, involving the following main SE tasks, i.e., Mining Software Repositories,
Configuration Extrapolation, Effort/Cost Estimation, and Developer Recommendation.
Effort/Cost Estimation. Effort/Cost estimation predicts how much effort is required to complete
a particular task or project. It is a crucial aspect of project management, playing a significant role
in setting realistic timelines and allocating resources efficiently. A representative effort estimation
activity is story point estimation, which is a regression task to measure the overall effort required
to fully implement a product backlog item. Fu et al. [35] presented GPT2SP, a Transformer-based
approach that captures the relationship among words while considering the context surrounding
a given word and its position in the sequence. It is designed to be transferable to other projects
while remaining explainable. They leveraged two concepts (i.e., feature-based explanations and
example-based explanations) of XAI to (1) help practitioners better understand what are the most
important word that contributed to the story point estimation of the given issue; and (2) search for
the best supporting examples that had the same word and story point from the same project.

3.2 Exploratory Data Analysis
Figure 2(a) describes the distribution of 108 primary studies in five SE activities. It is noteworthy
that the highest number of studies is observed in software maintenance, comprising 49.1% of the
total research volume. Following that, 24.1% of studies were dedicated to software testing, and 22.2%
of studies focused on solving SE tasks in software development. This distribution underscores the
vital focus on development and maintenance tasks. By contrast, software requirements and design
(0.9%) and software management (3.7%) only account for a marginal proportion of the research

ACM Comput. Surv., Vol. 58, No. 4, Article 95. Publication date: October 2025.

A Systematic Literature Review on Explainability for ML/DL-based Software Engineering 95:9

1

1

1

1

1

1

1

1

1
1

2
3

1

1

1
1

1

2
3

3
3

1

1

1

2

1

1
1

3
5

1

1

4
1

2
1

2
1

7

1
4

1
1

2

1

1

1

4
4

1
1

3
2

1
3

2

3

3

2

R e q u i r e m e n t C l a s s i f i c a t i o n
C o d e U n d e r s t a n d i n g

P r o g r a m S y n t h e s i s
C o d e S u m m a r i z a t i o n

C o d e S e a r c h
A P I R e c o m m e n d a t i o n

T e s t C a s e - R e l a t e d
D e b u g g i n g

V u l n e r a b i l i t y D e t e c t i o n
B u g / F a u l t L o c a l i z a t i o n

P r o g r a m R e p a i r
M a l w a r e / A n o m a l y D e t e c t i o n

B u g / D e f e c t P r e d i c t i o n
O S S S u s t a i n a b i l i t y P r e d i c t i o n

R o o t C a u s e A n a l y s i s
C o d e R e v i e w

C o d e S m e l l D e t e c t i o n
C o d e C l o n e D e t e c t i o n

B u g R e p o r t - R e l a t e d
M i n i n g S o f t w a r e R e p o s i t o r i e s
C o n f i g u r a t i o n E x t r a p o l a t i o n

E f f o r t / C o s t E s t i m a t i o n
D e v e l o p e r R e c o m m e n d a t i o n

0 2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0

 2 0 1 3 2 0 1 8 2 0 1 9 2 0 2 0 2 0 2 1 2 0 2 2 2 0 2 3 2 0 2 4

Fig. 3. Articles published per year according to SE tasks.

share, suggesting a relatively limited exploration in these areas. To further identify the main
contribution of each primary study, we also investigated the contribution statements in each article,
and then grouped them into four categories, i.e., New Technique, Empirical Study, Case Study, and
Replication Study. As shown in Figure 2(b), 78.7% of the primary studies concentrated on proposing
novel explanation techniques, while 18.5% of the research focused on leveraging off-the-shelf XAI
tools to empirically study the explainability of certain AI4SE solutions from different perspectives
(e.g., stability [117] and consistency [79]). Another two works [59, 109] performed case studies
(1.9%) in real world, especially for enterprise usage, to investigate practitioners’ adoption of AI4SE
solutions. The remaining one [48] conducted a replication study (0.9%) to validate the controversial
conclusions in terms of local and global explanations.

Figure 3 displays a visual breakdown of these SE tasks. Unsurprisingly, there was very little work
done between before the years of 2012 and 2018. Early SE tasks to explore the explainability were
those of Bug Report-Related Automation and Bug/Defect Prediction. It was not until 2020 that the
diversity experienced a significant increase, including tasks such as Malware/Anomaly Detection,
Debugging, and Program Synthesis. It is noteworthy that there are three main SE tasks that have
consistently maintained high activity levels over the years: Bug/Defect Prediction, Vulnerability
Detection, and Malware/Anomaly Detection, composing ≈42% of the studies we collected. We suspect
that a variety of reasons contribute to the multiple applications of XAI in these tasks. First and
foremost, is that these tasks are essentially binary classification problems that ML/DL models have
shown promising results in. The second-largest reason is the mandatory requirement of high-stakes
applications. In fact, black-box models are not even allowed in regulated fields unless they are
supplemented with explanations [41]. In addition, several tasks (e.g., Mining Software Repositories
[71], Root Cause Analysis [106, 125], and Bug/Fault Localization [56, 143]) that had yet to be explored
or were underrepresented before [85] have recently gained traction of the research community,
in part due to their relative success in practice. We anticipate that this trend continues as more
powerful AI4SE solutions evolve from experimental prototypes to practical tools.

ACM Comput. Surv., Vol. 58, No. 4, Article 95. Publication date: October 2025.

95:10 S. Cao et al.

- ▶ RQ1—Summary ◀

—We categorized a total of 108 primary studies into 23 unique SE tasks across five major
activities within SDLC. Subsequently, we delved into the progress of existing XAI4SE
research among these SE activities.

—Attention of academics and practitioners has experienced a notable shift across a 13-year
period. Early studies predominantly concentrated on traditional classification tasks like
Bug/Defect Prediction. Since 2021, the set of target SE topics grew to become more diverse
and complex, including tasks such as Developer Recommendation, Root Cause Analysis, and
Program Synthesis.

—While there has been a recent wealth of work, there are still underrepresented topics in
software requirements and design and software management that should be considered by
the SE community, suggesting a potential area of focus for future research in this field.

4 RQ2: How XAI Techniques Are Used to Support SE Tasks?
In Section 3, we analyzed which AI-assisted SE tasks have been explored for explainability to date.
In this part, we turn our attention to two key components of XAI: explanation approaches and
explanation formats. Establishing the association between explanation approaches and target SE
tasks helps to empirically determine whether certain XAI techniques are particularly suitable for
specific SE tasks. Meanwhile, the explanation formats adopted across different SE tasks reveal key
aspects that the stakeholders seek to understand from the decision of a given black-box model.
Specifically, we aimed to create a taxonomy of XAI techniques for AI4SE studies and determine if
there was a correlation between the explanation approaches and explanation formats.

4.1 RQ2𝑎: What Types of XAI Techniques Are Employed to Generate Explanations?
We first discuss various explanation approaches employed by existing XAI4SE studies. One classical
practice is building a taxonomy of XAI techniques used in our surveyed literature. However, we
note that the XAI community lacks a formal consensus on the taxonomy, as the landscape of
explainability is too broad, involving substantial theories related to philosophy, social science, and
cognitive science [119]. In addition, these taxonomies are mostly developed for general purpose
or specific downstream applications such as healthcare [99] and finance [158], and may not be
applicable to the SE field. As a countermeasure, we summarize the XAI techniques used in primary
studies, and propose a novel taxonomy applicable to the field of SE. In particular, from an integration
perspective, most XAI techniques studied in this review can be categorized into five groups: OT
(≈34%), IM (≈23%), DK (≈20%), AM (≈10%), as well as a set of other custom, highly tailored
approaches (≈13%). Figure 4 illustrates the various types of XAI techniques that we extracted from
our selected studies.
OT. Embracing off-the-shelf techniques from the field of XAI served as a natural starting point
for researchers, given the surge in publications and widespread adoption across various industries.
Examining the prevalence of various different types of XAI tools, we found that Feature Pertur-
bation [78, 108, 160] are the most popular approaches, followed by gradient-based [115, 126] and
decomposition-based approaches [5, 86, 118]. The prevalence of perturbation-based approaches
is expected, as they can work at various levels including embeddings vectors [149], source code
[140], texts [114], and data structure [65], which are common types of artifacts being used in
AI4SE approaches. An early representative perturbation-based approach is Local Interpretable
Model-agnostic Explanations (LIME) [108]. Specifically, LIME first perturbs the to-be-explained
instance in the high-dimensional feature space to randomly generate synthetic neighbors. Then,
based on their prediction results derived from the global black-box model, LIME trains a local

ACM Comput. Surv., Vol. 58, No. 4, Article 95. Publication date: October 2025.

A Systematic Literature Review on Explainability for ML/DL-based Software Engineering 95:11

Filter by page

limit (pages > 6)

Research

Question

AI4SE

Activity

Explanation

Techniques

21 Selected

conferences

6 Selected

journals

119 papers 14 papers

21 Selected

conferences

6 Selected

journals

119 papers 14 papers

Manual Search

Identify

relevant venues

Automated Search

IEEE Xplore
ACM Digital

Library
SpringerLink Wiely Scopus

Web of

Science

Google

Scholar

305 papers 2,822 papers 23,696 papers 2,214 papers 35,407 papers 281 papers 27,925 papers

Automated Search

IEEE Xplore
ACM Digital

Library
SpringerLink Wiely Scopus

Web of

Science

Google

Scholar

305 papers 2,822 papers 23,696 papers 2,214 papers 35,407 papers 281 papers 27,925 papers

Derive

search strings

Refine

search

strings

Export

E
v
a

lu
a
te

C
o

m
p

le
m

e
n

t

92,783

papers

92,783

papers

Export

Export

Add 11

papers

Add 11

papers

29 papers29 papers

Study selection

Manual Search

Forward Backward

6 papers 23 papers

Forward Backward

6 papers 23 papers

Total 108 papers

Study Identification

Remove

duplicate studies

Check the venue,

title, and abstract

Scan full-text to select

primary studies

Conduct quality

assessment

Study Selection

34,652 papers 23,508 papers 494 papers 143 papers 97 papers

Anchor

SHAP

Backtracking

Counterfactuals

LIME LLM-based
Chatbot

BreakDown

Decision Tree

Grad-CAM

RuleFit

Naïve Bayes

Multi-Head
Attention

GNN-Explainer

Self-Attention

Multi-Modal
Attention

Explanations

for AI4SE

Pipelines

Explanations

for AI4SE

Pipelines

Model-Dependent Techniques

Counterfactual

Explanation

Structural

Analysis

Casual

Inference
LIME SHAP BreakDownDeepLIFT

GradCAM Rule InductionDelta Debugging

Neuron Activation Difference

Model-Agnostic Techniques

GNNExplainer

GNN-LRP PGExplainer

SubgraphX

Decision Tree

Attention

Mechanism

Random

Forest

Self-Explainable Techniques

Graph Tensor Convolution

Neural Network

Feature

Backtracking

Neural Machine

Translation

Specification

Mining

Knowledge

Graph/Base

BERT Multi-Task Learning

Tailored Techniques

 14 src/mongo/shell/linenoise.cpp

 @@ -2762,7 +2762,17 @@ int linenoiseHistorySetMaxLen(int len) {

 # Get the HTML fragment inside the appropriate HTML element and then
 # extract the text from it.
 html_frag = extract_text_in(html, u"<div class='lyricbox'>")
- lyrics = _scrape_strip_cruft(html_frag, True)
+ if html_frag:
+ lyrics = _scrape_strip_cruft(html_frag, True)

- if lyrics and 'Unfortunately, we are not licensed' not in lyrics:
- return lyrics
+ if lyrics and 'Unfortunately, we are not licensed' not in lyrics:
+ return lyrics

347 347
348 348
349 349
350
 350
 351
351 352
352
353
 353
 354

 14 src/mongo/shell/linenoise.cpp

 @@ -2762,7 +2762,17 @@ int linenoiseHistorySetMaxLen(int len) {

 /* Save the history in the specified file. On success 0 is returned
 * otherwise -1 is returned. */
 int linenoiseHistorySave(const char* filename {
- FILE&* fp = fopen(filename, "wt");
 if (fp == NULL) {
 return -1;
 }

 for (int j = 0; j < historyLen; ++j) {
 if (history[j][0] != '\0') {
 fprintf(fp, "%s\n", history[j]);
 }
 }
- fclose(fp);
 return 0;
 }

2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777

 CVE-2016-6494 Detail

Description
The client in MongoDB uses world-readable permissions on .dbshell history

files, which might allow local users to obtain sensitive information by reading

these files.

Weakness Enumeration

CWE-ID CWE Name

CWE-200 Exposure of Sensitive Information to an Unauthorized Actor

CWE-ID CWE Name

CWE-200 Exposure of Sensitive Information to an Unauthorized Actor

VulTeller
The FILE before VERSION does not verify that use ofthe permissions on

history files, allows local guest to read sensitive information by reading these

files.

 14 src/mongo/shell/linenoise.cpp

 @@ -2762,7 +2762,17 @@ int linenoiseHistorySetMaxLen(int len) {

 /* Save the history in the specified file. On success 0 is returned
 * otherwise -1 is returned. */
 int linenoiseHistorySave(const char* filename {
- FILE&* fp = fopen(filename, "wt");
 if (fp == NULL) {
 return -1;
 }

 for (int j = 0; j < historyLen; ++j) {
 if (history[j][0] != '\0') {
 fprintf(fp, "%s\n", history[j]);
 }
 }
- fclose(fp);
 return 0;
 }

2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777

 CVE-2016-6494 Detail

Description
The client in MongoDB uses world-readable permissions on .dbshell history

files, which might allow local users to obtain sensitive information by reading

these files.

Weakness Enumeration

CWE-ID CWE Name

CWE-200 Exposure of Sensitive Information to an Unauthorized Actor

VulTeller
The FILE before VERSION does not verify that use ofthe permissions on

history files, allows local guest to read sensitive information by reading these

files.

XAI Techniques

Scope Stage Portability

Local

Global

Ante-Hoc

Post-Hoc

Model-
Specific

Model-
Agnostic

time_days

last_state

>13.9

num_fix_files

<=13.9

time_days

Verified
Fixed

ReopenedReopened

Resolved
Fixed

Assigned
Fixed

� � �

���

Reopened

<=21.3

time_days

>21.3

Not ReopenedReopened

<=65.1>65.1

Reopened

>4

num_fix_files

<=4

Not Reopened

>2

time_days

<=2

Not Reopened

>7.25

� � �

<=7.25

Conceptual
Model

Semantic
Matching

Information
Retrieval

Specifications
Synthesis

Delta
Debugging

Auxiliary
TaskKnowledge

Graph

Linear
Regression

Rule
Induction

Formal
Reasoning

Causal
Inference

FFT

WheaCha

Probing

IF THEN TRUE

IF THEN TRUE

 14 src/mongo/shell/linenoise.cpp

 @@ -2762,7 +2762,17 @@ int linenoiseHistorySetMaxLen(int len) {

 int linenoiseHistorySave(const char* filename {
 FILE&* fp = fopen(filename, "wt");
 if (fp == NULL) {
 return -1;
 }
 for (int j = 0; j < historyLen; ++j) {
 if (history[j][0] != '\0') {
 fprintf(fp, "%s\n", history[j]);
 }
 }
 fclose(fp);
 return 0;
 }

2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777

 CVE-2016-6494 Detail

Description
The client in MongoDB uses world-readable permissions on .dbshell history

files, which might allow local users to obtain sensitive information by reading

these files.

Weakness Enumeration

CWE-ID CWE Name

CWE-200 Exposure of Sensitive Information to an Unauthorized Actor

CWE-ID CWE Name

CWE-200 Exposure of Sensitive Information to an Unauthorized Actor

VulTeller
The FILE before VERSION does not verify that use ofthe permissions on

history files, allows local guest to read sensitive information by reading these

files.

VulTeller
The FILE before VERSION does not verify that use ofthe permissions on

history files, allows local guest to read sensitive information by reading these

files.

Explainable AI for Software Engineering Guidelines

Guideline 1 Guideline 2 Guideline 3 Guideline 4 Guideline 5

Codeℚ

SmoothGrad

Fig. 4. XAI technique & distribution.

surrogate model (e.g., decision tree and linear regression) to produce an explanation. LIME has been
successfully applied to various SE tasks, such as defect prediction [61, 140, 174], OSS Sustainability
Prediction [149], and test case generation [2]. SHapley Additive exPlanations (SHAP) [78],
which stems from game theory, is another popular XAI technique based on perturbation-based
feature attribution. It assigns each feature a fair value, otherwise known as shapley value, to measure
its contribution to the model’s output. Features with positive SHAP values positively impact the
prediction, and vice versa. Similar to LIME, SHAP is also model-agnostic, thus it can be used to
explain any ML model. For example, Widyasari et al. [144] applied a tree ensemble model-specific
variant, TreeSHAP [77], to identify which code statements are important in each failed test case.
However, post-hoc approaches such as LIME and SHAP are computationally expensive. As a conse-
quent, they are usually limited to simpler problems with a small number of features. In addition,
important features highlighted by out-of-the-box tools are not necessarily user-friendly in terms of
understandability and usability. For example, the importance of a single token in a code snippet
may not convey a sufficiently meaningful explanation.
IM. As pointed out by Chen et al. [11], complex models did not always perform better than simpler
alternatives. Thus, for certain SE tasks, the easiest way to achieve explainability is to construct
IMs, such as Decision Tree (DT), Linear Regression (LR), and Naïve Bayes (NB). These models
have built-in explainability by nature. For instance, DT predicts the value of a target variable
by learning simple if-then-else rules inferred from the data features. The tree structure is ideal
for capturing interactions between features in the data, and also has a natural visualization of
a decision making process. Taking Figure 5 as an example, each node in a DT may refer to an
explanation, e.g., when the time_days variable (i.e., the number of days to fix the bug) is greater
than 13.9 and the last status is Resolved Fixed, then the bug will be re-opened [116]. In addition,
IMs can serve as post-hoc surrogates to explain individual predictions of black-box models. The
goal behind this insight is to leverage a relatively simpler and transparent model to approximate the

ACM Comput. Surv., Vol. 58, No. 4, Article 95. Publication date: October 2025.

95:12 S. Cao et al.

predictions of the complicated model as best as possible, and at the same time, provide explainability.
Surrogate models have shown effectiveness in explaining AI4SE approaches built upon more
complex ML/DL models such as deep neural networks. Examples include vulnerability detection
[177], defect prediction [103], and program repair [83]. It is noteworthy that, due to the weak
capability of processing complex data, intrinsically IMs are prone to getting trapped into the tradeoff
dilemma between performance and explainability, i.e., sacrificing predictive accuracy in exchange for
explainability.

Filter by page

limit (pages > 6)

Research

Question

AI4SE

Activity

Explanation

Techniques

17 Selected

conferences

8 Selected

journals

86 papers 5 papers

17 Selected

conferences

8 Selected

journals

86 papers 5 papers

Manual Search

Identify

relevant venues

Automated Search

IEEE Xplore
ACM Digital

Library
SpringerLink Wiely Scopus

Web of

Science

Google

Scholar

247 papers 2,184 papers 18,706 papers 1,940 papers 29,346 papers 211 papers 17,600 papers

Automated Search

IEEE Xplore
ACM Digital

Library
SpringerLink Wiely Scopus

Web of

Science

Google

Scholar

247 papers 2,184 papers 18,706 papers 1,940 papers 29,346 papers 211 papers 17,600 papers

Derive

search strings

Refine

search

strings

Export

E
v
a

lu
a
te

C
o

m
p

le
m

e
n

t

70,325

papers

70,325

papers

Export

Export

Add 4

papers

Add 4

papers

47 papers47 papers

Study selection

Manual Search

Forward Backward

35 papers 12 papers

Forward Backward

35 papers 12 papers

Total 65 papers

Study Identification

Remove

duplicate studies

Check the venue,

title, and abstract

Scan full-text to select

primary studies

Conduct quality

assessment

Study Selection

28,524 papers 21,817 papers 445 papers 128 papers 61 papers

LIME

SHAP

BreakDown

GNNExplainer
GNN-LRP

DeepLIFT

GradCAM

PGExplainer

SubgraphX

Rule Induction

Graph Tensor Convolution

Neural Network
Structural

Analysis

Delta

Debugging

Counterfactual

Explanation

Casual

Inference

LLM-

Specific

Techniques

Model-

Specific

Techniques

Tailored

Explanation

Techniques for

AI4SE Studies

Decision Tree

Feature

Backtracking

Neuron Activation

Difference

Model-

Agnostic

Techniques

Neural Machine

Translation

Self-

Explainable

Techniques

Specification

Mining

Attention

Mechanism

Knowledge

Graph/Base

BERT

Multi-Task

Learning
Random

Forest

Explanations

for AI4SE

Pipelines

Explanations

for AI4SE

Pipelines

Model-Dependent Techniques

Counterfactual

Explanation

Structural

Analysis

Casual

Inference
LIME SHAP BreakDownDeepLIFT

GradCAM Rule InductionDelta Debugging

Neuron Activation Difference

Model-Agnostic Techniques

GNNExplainer

GNN-LRP PGExplainer

SubgraphX

Decision Tree

Attention

Mechanism

Random

Forest

Self-Explainable Techniques

Graph Tensor Convolution

Neural Network

Feature

Backtracking

Neural Machine

Translation

Specification

Mining

Knowledge

Graph/Base

BERT Multi-Task Learning

Tailored Techniques

 14 src/mongo/shell/linenoise.cpp

 @@ -2762,7 +2762,17 @@ int linenoiseHistorySetMaxLen(int len) {

 # Get the HTML fragment inside the appropriate HTML element and then
 # extract the text from it.
 html_frag = extract_text_in(html, u"<div class='lyricbox'>")
- lyrics = _scrape_strip_cruft(html_frag, True)
+ if html_frag:
+ lyrics = _scrape_strip_cruft(html_frag, True)

- if lyrics and 'Unfortunately, we are not licensed' not in lyrics:
- return lyrics
+ if lyrics and 'Unfortunately, we are not licensed' not in lyrics:
+ return lyrics

347 347
348 348
349 349
350
 350
 351
351 352
352
353
 353
 354

 14 src/mongo/shell/linenoise.cpp

 @@ -2762,7 +2762,17 @@ int linenoiseHistorySetMaxLen(int len) {

 /* Save the history in the specified file. On success 0 is returned
 * otherwise -1 is returned. */
 int linenoiseHistorySave(const char* filename {
- FILE&* fp = fopen(filename, "wt");
 if (fp == NULL) {
 return -1;
 }

 for (int j = 0; j < historyLen; ++j) {
 if (history[j][0] != '\0') {
 fprintf(fp, "%s\n", history[j]);
 }
 }
- fclose(fp);
 return 0;
 }

2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777

 CVE-2016-6494 Detail

Description
The client in MongoDB uses world-readable permissions on .dbshell history

files, which might allow local users to obtain sensitive information by reading

these files.

Weakness Enumeration

CWE-ID CWE Name

CWE-200 Exposure of Sensitive Information to an Unauthorized Actor

CWE-ID CWE Name

CWE-200 Exposure of Sensitive Information to an Unauthorized Actor

VulTeller
The FILE before VERSION does not verify that use ofthe permissions on

history files, allows local guest to read sensitive information by reading these

files.

 14 src/mongo/shell/linenoise.cpp

 @@ -2762,7 +2762,17 @@ int linenoiseHistorySetMaxLen(int len) {

 /* Save the history in the specified file. On success 0 is returned
 * otherwise -1 is returned. */
 int linenoiseHistorySave(const char* filename {
- FILE&* fp = fopen(filename, "wt");
 if (fp == NULL) {
 return -1;
 }

 for (int j = 0; j < historyLen; ++j) {
 if (history[j][0] != '\0') {
 fprintf(fp, "%s\n", history[j]);
 }
 }
- fclose(fp);
 return 0;
 }

2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777

 CVE-2016-6494 Detail

Description
The client in MongoDB uses world-readable permissions on .dbshell history

files, which might allow local users to obtain sensitive information by reading

these files.

Weakness Enumeration

CWE-ID CWE Name

CWE-200 Exposure of Sensitive Information to an Unauthorized Actor

VulTeller
The FILE before VERSION does not verify that use ofthe permissions on

history files, allows local guest to read sensitive information by reading these

files.

XAI Approaches

Scope
Where is the XAI

approach focusing on?

Stage
How is the XAI

approach developed?

Portability
Which is XAI

approach applied to?

Local

Global

Ante-Hoc

Post-Hoc

Model-
Specific

Model-
Specific

time_days

last_state

>13.9

num_fix_files

<=13.9

time_days

Verified
Fixed

ReopenedReopened

Resolved
Fixed

Assigned
Fixed

� � �

���

Reopened

<=21.3

time_days

>21.3

Not ReopenedReopened

<=65.1>65.1

Reopened

>4

num_fix_files

<=4

Not Reopened

>2

time_days

<=2

Not Reopened

>7.25

� � �

<=7.25

Fig. 5. Sample decision tree used for re-opened bug prediction.

DK. Inspired by the successful prac-
tice in Software Engineering for
AI (SE4AI), some works take special
steps to incorporate additional knowl-
edge from experts into their explana-
tions. Concretely, we identify two in-
cipient trends in the application of
DK: (¶) designing one or more aux-
iliary tasks related to the main task
to provide additional insights regard-
ing the input data, and (·) the use
of an external knowledge database
curated by experts. For example, to
explain why a program/commit was
predicted as vulnerable, recent works proposed to predict vulnerability types [34], identify key
aspects [123], generate vulnerability descriptions [82, 166], search for similar issues [93], and so on.
To assist developers in understanding the return results of neural code search tools, XCoS [135]
constructed a background knowledge graph, and regarded it as an external knowledge base to
provide conceptual association paths, relevant descriptions, and additional suggestions, as explana-
tions. Despite promising, they are mostly task-specific, and “what makes a good explanation” is still
an open problem.
AM. As an increasingly common ingredient of neural architectures, AM has been widely applied to
various SE tasks. Besides providing substantial performance benefits, it allows users to understand
which parts of an input a model is most interested in through assigned weights, making the use of
attention an intuitive option in practice. For example, Li et al. [63] employed an attention-based GNN
model, named GAT [132], to weigh the importance of neighboring code graph nodes in runtime
exception detection. Apart from explaining a model’s individual predictions, AM can also offer
insights into the inner workings of foundation models, providing a powerful tool for SE in the era
of Large Language Models (LLMs). A representative technique is probing, which trains a shallow
classifier on top of the pre-trained or fine-tuned LLMs to identify certain knowledge/linguistic
properties acquired by the model. For instance, Ma et al. [81] designed four probing tasks to analyze
the capabilities of code models in understanding syntax and semantics by directly recovering the
syntax and semantic structures from the code representation.

Although attention is a core component of Transformers and has been integrated into various
neural architectures such as RNNs and GNNs, its usefulness for explainability remains a topic of
ongoing debate. There is skepticism about whether the AMs, which require substantial retraining,
evaluation, and validation, can significantly enhance explainability in XAI4SE. Recent studies
[58, 98] have highlighted a persistent misalignment between human attention and model-generated
attention in all CodeLMs, unveiling the faithfulness violation issue. Moreover, raw attention contains
redundant information, further reducing its reliability in explanations [171].

ACM Comput. Surv., Vol. 58, No. 4, Article 95. Publication date: October 2025.

A Systematic Literature Review on Explainability for ML/DL-based Software Engineering 95:13

Others. Apart from the above approaches, we also observed a number of XAI techniques, such as
Causal Inference and LLM-based Chatbots, that are specifically tailored for given SE tasks or neural
architectures. Theory of Causation [131] endows the model with the ability to pursue real causality
without the interference from confounding factors. Such mechanism is a useful verification tool to
achieve a more complete understanding of black-box neural models in SE tasks. For example, Palacio
et al. [90] proposed a post-hoc approach specific to neural code models that provides programming
language-oriented explanations based upon causal inference. To further provide actionable advice,
some works employed counterfactuals-based causal inference paradigm to understand how the
model reacts to feature changes. Cito et al. [17] proposed a Masked Language Modeling (MLM)-
based perturbation algorithm, which replaces each tokenwith a blank “mask” and usesMLM to come
up with a plausible replacement for the original token, for generating counterfactual explanations.
Counterfactuals-based explanation not only reveals which region of the input program is used by
the code model for prediction, but also conveys critical information on how to modify the code
so that the model will change its prediction. Recently, inspired by the remarkable performance
in natural language understanding and logic reasoning, LLMs have been (in)directly integrated
into the workflow of AI4SE approaches to offer explainability [74, 143]. For instance, given an
identified TODO-missed commit, Wang et al. [136] fed it with the most similar historical commit
to ChatGPT3 to analyze where and what comment users should insert.

4.1.1 Exploratory Data Analysis. Overall, OT is the most prevalent explainability technique in
XAI4SE research, followed by IM, DK, and AM. Given the rapid development of the XAI community,
the popularity of OT and AM is not surprising. Meanwhile, the prevalence of IM is also logical,
as they are inherently more understandable to humans and can serve as surrogate models to
explain individual predictions of complex deep neural networks, which are more common in
AI4SE approaches. Due to the diversity of SE data, DK-based explanations are also popular. The
explanations are intended to give control back to the user by helping them understand the model
and offering additional insights into the input data.

In addition to the prevalence, selecting the most suitable explanation approach for a specific task
is also a crucial aspect that needs to be carefully considered. We further extracted the selection
rationale for XAI techniques from the primary studies, and classified them into the following three
categories:
Task Fitness. Given the inherent differences in feature engineering and functional requirements
among various AI4SEworkflows, some studies selected XAI techniques based on their characteristics
and fitness with target SE tasks. For instance, the explanations for most of the feature engineering-
based AI4SE pipelines (e.g., defect prediction [103] and OSS sustainability prediction [149]) were de-
rived by using IMs, such as decision tree or RuleFit [33], thanks to their strong ability to analyze and
extract human-understandable rules from hand-crafted feature metrics which are usually limited.
Model Compatibility. Since certain crafted XAI techniques have strict application scenarios,
e.g., requiring the internal architecture or parameter information of to-be-explained models, some
researchers determined themost suitable XAI techniques from those compatible with their employed
models. For instance, deconvolution and Grad-CAM are preferred in CNN-based SEmodels [44, 107],
while Codeℚ [96] is less commonly used in resource-constrained scenarios due to its expensive
computational overhead.
Stakeholder Preference. In addition to the task fitness and model compatibility, stakeholder
preference is also one of the important factors affecting the selection of XAI techniques. Generally

3https://chatgpt.com/

ACM Comput. Surv., Vol. 58, No. 4, Article 95. Publication date: October 2025.

https://chatgpt.com/

95:14 S. Cao et al.

Filter by page
limit (pages > 6)

Research
Question

AI4SE
Activity

Explanation
Techniques

21 Selected
conferences

6 Selected
journals

119 papers 14 papers

21 Selected
conferences

6 Selected
journals

119 papers 14 papers

Manual Search
Identify

relevant venues

Automated Search

IEEE Xplore ACM Digital
Library SpringerLink Wiely Scopus Web of

Science
Google
Scholar

305 papers 2,822 papers 23,696 papers 2,214 papers 35,407 papers 281 papers 27,925 papers

Automated Search

IEEE Xplore ACM Digital
Library SpringerLink Wiely Scopus Web of

Science
Google
Scholar

305 papers 2,822 papers 23,696 papers 2,214 papers 35,407 papers 281 papers 27,925 papers
Derive

search strings

Refine
search
strings

Export

Ev
al

ua
te

C
om

pl
em

en
t

92,783
papers
92,783
papers

Export

Export

Add 11
papers
Add 11
papers

29 papers29 papers

Study selection

Manual Search

Forward Backward

6 papers 23 papers

Forward Backward

6 papers 23 papers

Total 108 papers

Study Identification

Remove
duplicate studies

Check the venue,
title, and abstract

Scan full-text to select
primary studies

Conduct quality
assessment

Study Selection

34,652 papers 23,508 papers 494 papers 143 papers 97 papers

Anchor

SHAP

Backtracking

Counterfactuals

LIME

SmoothGrad

LLM

BreakDown

Decision Tree

Grad-CAM

RuleFit

Naïve Bayes

Explanation
Techniques for
AI4SE Studies

Multi-Head
Attention

GNN-Explainer

Self-Attention

Multi-Modal
Attention

Explanations
for AI4SE
Pipelines

Explanations
for AI4SE
Pipelines

Model-Dependent Techniques

Counterfactual
Explanation

Structural
Analysis

Casual
Inference

LIME SHAP BreakDownDeepLIFT

GradCAM Rule InductionDelta Debugging

Neuron Activation Difference

Model-Agnostic Techniques

GNNExplainer

GNN-LRP PGExplainer

SubgraphX

Decision Tree

Attention
Mechanism

Random
Forest

Self-Explainable Techniques

Graph Tensor Convolution
Neural Network

Feature
Backtracking

Neural Machine
Translation

Specification
Mining

Knowledge
Graph/Base

BERT Multi-Task Learning

Tailored Techniques

 14 src/mongo/shell/linenoise.cpp

 @@ -2762,7 +2762,17 @@ int linenoiseHistorySetMaxLen(int len) {

 # Get the HTML fragment inside the appropriate HTML element and then
 # extract the text from it.
 html_frag = extract_text_in(html, u"<div class='lyricbox'>")
- lyrics = _scrape_strip_cruft(html_frag, True)
+ if html_frag:
+ lyrics = _scrape_strip_cruft(html_frag, True)

- if lyrics and 'Unfortunately, we are not licensed' not in lyrics:
- return lyrics
+ if lyrics and 'Unfortunately, we are not licensed' not in lyrics:
+ return lyrics

347 347
348 348
349 349
350
 350
 351
351 352
352
353
 353
 354

 14 src/mongo/shell/linenoise.cpp

 @@ -2762,7 +2762,17 @@ int linenoiseHistorySetMaxLen(int len) {

 /* Save the history in the specified file. On success 0 is returned
 * otherwise -1 is returned. */
 int linenoiseHistorySave(const char* filename {
- FILE&* fp = fopen(filename, "wt");
 if (fp == NULL) {
 return -1;
 }

 for (int j = 0; j < historyLen; ++j) {
 if (history[j][0] != '\0') {
 fprintf(fp, "%s\n", history[j]);
 }
 }
- fclose(fp);
 return 0;
 }

2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777

 CVE-2016-6494 Detail
Description
The client in MongoDB uses world-readable permissions on .dbshell history
files, which might allow local users to obtain sensitive information by reading
these files.

Weakness Enumeration
CWE-ID CWE Name

CWE-200 Exposure of Sensitive Information to an Unauthorized Actor

CWE-ID CWE Name

CWE-200 Exposure of Sensitive Information to an Unauthorized Actor

VulTeller
The FILE before VERSION does not verify that use ofthe permissions on
history files, allows local guest to read sensitive information by reading these
files.

 14 src/mongo/shell/linenoise.cpp

 @@ -2762,7 +2762,17 @@ int linenoiseHistorySetMaxLen(int len) {

 /* Save the history in the specified file. On success 0 is returned
 * otherwise -1 is returned. */
 int linenoiseHistorySave(const char* filename {
- FILE&* fp = fopen(filename, "wt");
 if (fp == NULL) {
 return -1;
 }

 for (int j = 0; j < historyLen; ++j) {
 if (history[j][0] != '\0') {
 fprintf(fp, "%s\n", history[j]);
 }
 }
- fclose(fp);
 return 0;
 }

2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777

 CVE-2016-6494 Detail
Description
The client in MongoDB uses world-readable permissions on .dbshell history
files, which might allow local users to obtain sensitive information by reading
these files.

Weakness Enumeration
CWE-ID CWE Name

CWE-200 Exposure of Sensitive Information to an Unauthorized Actor

VulTeller
The FILE before VERSION does not verify that use ofthe permissions on
history files, allows local guest to read sensitive information by reading these
files.

XAI Techniques

Scope
Where is the XAI

approach focusing on?

Stage
How is the XAI

approach developed?

Portability
What is the

application scenario?

Local

Global

Ante-Hoc

Post-Hoc

Model-
Specific

Model-
Agnostic

time_days

last_state

>13.9

num_fix_files

<=13.9

time_days

Verified
Fixed

ReopenedReopened

Resolved
Fixed

Assigned
Fixed

� � �

���

Reopened

<=21.3

time_days

>21.3

Not ReopenedReopened

<=65.1>65.1

Reopened

>4

num_fix_files

<=4

Not Reopened

>2

time_days

<=2

Not Reopened

>7.25

� � �

<=7.25

Out-of-the-
Box Toolkit

(~34%)

Attention
Mechanism

(~10%)

Conceptual
Model

Semantic
Matching

Information
Retrieval

Specifications
Synthesis

Delta
Debugging

Auxiliary
TaskKnowledge

Graph

Linear
Regression

Rule
Induction

Formal
Reasoning

Others
(~13%)

Causal
Inference

Domain
Knowledge

(~20%)

FFT

Interpretable
Models
(~23%)

WheaCha

Probing

COMM 11.00

CountClassBase 8.0

CountOutput_Min 0.00

DDEV 3.00

CountClassDerived 2.0

Feature Value

(a) Numerical explanation.

Filter by page
limit (pages > 6)

Research
Question

AI4SE
Activity

Explanation
Techniques

21 Selected
conferences

6 Selected
journals

119 papers 14 papers

21 Selected
conferences

6 Selected
journals

119 papers 14 papers

Manual Search
Identify

relevant venues

Automated Search

IEEE Xplore ACM Digital
Library SpringerLink Wiely Scopus Web of

Science
Google
Scholar

305 papers 2,822 papers 23,696 papers 2,214 papers 35,407 papers 281 papers 27,925 papers

Automated Search

IEEE Xplore ACM Digital
Library SpringerLink Wiely Scopus Web of

Science
Google
Scholar

305 papers 2,822 papers 23,696 papers 2,214 papers 35,407 papers 281 papers 27,925 papers
Derive

search strings

Refine
search
strings

Export

Ev
al

ua
te

C
om

pl
em

en
t

92,783
papers
92,783
papers

Export

Export

Add 11
papers
Add 11
papers

29 papers29 papers

Study selection

Manual Search

Forward Backward

6 papers 23 papers

Forward Backward

6 papers 23 papers

Total 108 papers

Study Identification

Remove
duplicate studies

Check the venue,
title, and abstract

Scan full-text to select
primary studies

Conduct quality
assessment

Study Selection

34,652 papers 23,508 papers 494 papers 143 papers 97 papers

Anchor

SHAP

Backtracking

Counterfactuals

LIME

SmoothGrad

LLM

BreakDown

Decision Tree

Grad-CAM

RuleFit

Naïve Bayes

Explanation
Techniques for
AI4SE Studies

Multi-Head
Attention

GNN-Explainer

Self-Attention

Multi-Modal
Attention

Explanations
for AI4SE
Pipelines

Explanations
for AI4SE
Pipelines

Model-Dependent Techniques

Counterfactual
Explanation

Structural
Analysis

Casual
Inference

LIME SHAP BreakDownDeepLIFT

GradCAM Rule InductionDelta Debugging

Neuron Activation Difference

Model-Agnostic Techniques

GNNExplainer

GNN-LRP PGExplainer

SubgraphX

Decision Tree

Attention
Mechanism

Random
Forest

Self-Explainable Techniques

Graph Tensor Convolution
Neural Network

Feature
Backtracking

Neural Machine
Translation

Specification
Mining

Knowledge
Graph/Base

BERT Multi-Task Learning

Tailored Techniques

 14 src/mongo/shell/linenoise.cpp

 @@ -2762,7 +2762,17 @@ int linenoiseHistorySetMaxLen(int len) {

 # Get the HTML fragment inside the appropriate HTML element and then
 # extract the text from it.
 html_frag = extract_text_in(html, u"<div class='lyricbox'>")
- lyrics = _scrape_strip_cruft(html_frag, True)
+ if html_frag:
+ lyrics = _scrape_strip_cruft(html_frag, True)

- if lyrics and 'Unfortunately, we are not licensed' not in lyrics:
- return lyrics
+ if lyrics and 'Unfortunately, we are not licensed' not in lyrics:
+ return lyrics

347 347
348 348
349 349
350
 350
 351
351 352
352
353
 353
 354

 14 src/mongo/shell/linenoise.cpp

 @@ -2762,7 +2762,17 @@ int linenoiseHistorySetMaxLen(int len) {

 /* Save the history in the specified file. On success 0 is returned
 * otherwise -1 is returned. */
 int linenoiseHistorySave(const char* filename {
- FILE&* fp = fopen(filename, "wt");
 if (fp == NULL) {
 return -1;
 }

 for (int j = 0; j < historyLen; ++j) {
 if (history[j][0] != '\0') {
 fprintf(fp, "%s\n", history[j]);
 }
 }
- fclose(fp);
 return 0;
 }

2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777

 CVE-2016-6494 Detail
Description
The client in MongoDB uses world-readable permissions on .dbshell history
files, which might allow local users to obtain sensitive information by reading
these files.

Weakness Enumeration
CWE-ID CWE Name

CWE-200 Exposure of Sensitive Information to an Unauthorized Actor

CWE-ID CWE Name

CWE-200 Exposure of Sensitive Information to an Unauthorized Actor

VulTeller
The FILE before VERSION does not verify that use ofthe permissions on
history files, allows local guest to read sensitive information by reading these
files.

 14 src/mongo/shell/linenoise.cpp

 @@ -2762,7 +2762,17 @@ int linenoiseHistorySetMaxLen(int len) {

 /* Save the history in the specified file. On success 0 is returned
 * otherwise -1 is returned. */
 int linenoiseHistorySave(const char* filename {
- FILE&* fp = fopen(filename, "wt");
 if (fp == NULL) {
 return -1;
 }

 for (int j = 0; j < historyLen; ++j) {
 if (history[j][0] != '\0') {
 fprintf(fp, "%s\n", history[j]);
 }
 }
- fclose(fp);
 return 0;
 }

2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777

 CVE-2016-6494 Detail
Description
The client in MongoDB uses world-readable permissions on .dbshell history
files, which might allow local users to obtain sensitive information by reading
these files.

Weakness Enumeration
CWE-ID CWE Name

CWE-200 Exposure of Sensitive Information to an Unauthorized Actor

VulTeller
The FILE before VERSION does not verify that use ofthe permissions on
history files, allows local guest to read sensitive information by reading these
files.

XAI Techniques

Scope
Where is the XAI

approach focusing on?

Stage
How is the XAI

approach developed?

Portability
What is the

application scenario?

Local

Global

Ante-Hoc

Post-Hoc

Model-
Specific

Model-
Agnostic

time_days

last_state

>13.9

num_fix_files

<=13.9

time_days

Verified
Fixed

ReopenedReopened

Resolved
Fixed

Assigned
Fixed

� � �

���

Reopened

<=21.3

time_days

>21.3

Not ReopenedReopened

<=65.1>65.1

Reopened

>4

num_fix_files

<=4

Not Reopened

>2

time_days

<=2

Not Reopened

>7.25

� � �

<=7.25

Out-of-the-
Box Toolkit

(~34%)

Attention
Mechanism

(~10%)

Conceptual
Model

Semantic
Matching

Information
Retrieval

Specifications
Synthesis

Delta
Debugging

Auxiliary
TaskKnowledge

Graph

Linear
Regression

Rule
Induction

Formal
Reasoning

Others
(~13%)

Causal
Inference

Domain
Knowledge

(~20%)

FFT

Interpretable
Models
(~23%)

WheaCha

Probing

COMM 11.00

CountClassBase 8.0

CountOutput_Min 0.00

DDEV 3.00

CountClassDerived 2.0

Feature Value

IF Del. Lines=40 & Entropy=0.97 & #Dev=3 THEN predict=TRUE

IF Entropy=0.97 THEN predict=TRUE

Rule1

Rule2

 14 src/mongo/shell/linenoise.cpp

 @@ -2762,7 +2762,17 @@ int linenoiseHistorySetMaxLen(int len) {

 int linenoiseHistorySave(const char* filename {
 FILE&* fp = fopen(filename, "wt");
 if (fp == NULL) {
 return -1;
 }
 for (int j = 0; j < historyLen; ++j) {
 if (history[j][0] != '\0') {
 fprintf(fp, "%s\n", history[j]);
 }
 }
 fclose(fp);
 return 0;
 }

2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777

 CVE-2016-6494 Detail
Description
The client in MongoDB uses world-readable permissions on .dbshell history
files, which might allow local users to obtain sensitive information by reading
these files.

Weakness Enumeration
CWE-ID CWE Name

CWE-200 Exposure of Sensitive Information to an Unauthorized Actor

CWE-ID CWE Name

CWE-200 Exposure of Sensitive Information to an Unauthorized Actor

VulTeller
The FILE before VERSION does not verify that use ofthe permissions on
history files, allows local guest to read sensitive information by reading these
files.

VulTeller
The FILE before VERSION does not verify that use ofthe permissions on
history files, allows local guest to read sensitive information by reading these
files.

Prediction Label: Vulnerable

(b) Source Code explanation.

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Alexander Kampmann, Nikolas Havrikov, Ezekiel O. Soremekun, and Andreas Zeller

In this paper, we introduce AlhazenÐan approach that auto-

matically determines the circumstances under which some program

behavior of interest takes place.1 As all program behavior is deter-

mined by its inputs, we see failure circumstances as properties of

the program input; our aim is thus to determine input features that

would be associated with the behavior in question.

As an example of how Alhazen works and what it produces,

assume some program P to evaluate mathematical functions; the

input sqrt(4), for instance, produces the output 2. Given the input

sqrt(-900), however, P hangs. At this point, the astute reader

already may have an idea on the circumstances of the failure; but

we want to determine these automatically. To do so, Alhazen

makes use of three key ingredients, illustrated in Figure 1:

Parsing. We use a grammar to parse program inputs into individ-

ual elements. This allows us to express fine-grained relation-

ships between input elements (and their features) and program

behavior (i.e. presence or absence of a failure).

Figure 2 lists the input grammar for P . This grammar will allow

us to express failure circumstances by means of the ⟨function⟩

being used and the ⟨number⟩ being passed.

Learning. We use a decision tree to learn which features of input

elements are associated with the program behavior in question.

By default, the features used in Alhazen test whether a partic-

ular element occurs in the input or not; in our failure-inducing

input, sqrt is present, whereas sin is not. If some element has

a numerical interpretation (such as ⟨number⟩), it also uses its

maximum value as feature.

The decision tree learner produces a tree that explains and

predicts when the behavior in question occurs based on a subset

of the input features. Figure 3 shows the initial decision tree

learned from the passing input sqrt(4) and the failing input

sqrt(-900). The initial hypothesis is that the failure occurs

when the largest 2 ⟨number⟩ is less than or equal to -445.5Ða

predicate chosen by the decision tree learner as a feature that

correctly distinguishes all observations so far.

1H. asan Ibn al-Haytham (Latinized as Alhazen; ∼965ś∼1040) was an Arab researcher
of the Islamic Golden Age. His Kitāb al-Manāz. ir łBook of Opticsž(1011ś1021) was
one of the first embodiments of the modern scientific method, proving hypotheses
through reproducible experiments that vary the experimental conditions in a system-
atic manner [34].
2In the example, there cannot be more than one number, but Alhazen would be able
to handle it if there were.

⟨start⟩ → ⟨function⟩ "(" ⟨number⟩ ")";

⟨function⟩ → "sqrt" | "sin" | "cos" | "tan";

⟨number⟩ → "-"? /[1-9][0-9]*/ ("." /[0-9]+/)?;

Figure 2: A grammar for evaluating functions.

max
(

⟨number⟩
)

≤ −445.5?

✘ ✔

yes no

Figure 3: Alhazen’s initial hypothesis in the sqrt example.

⟨function⟩ = "sqrt"?

✔ max
(

⟨number⟩
)

≤ 0.0?

✘ ✔

no yes

yes no

Figure 4: Final decision tree after iteration 29.

⟨function⟩ = "sqrt"?

result < 4.0

max
(

⟨number⟩
)

≥ 16.0?

result ≥ 4.0 result < 4.0

no

yes

yes no

Figure 5: Circumstances for the result being 4.0 or more.

Generating. To precisely capture the failure circumstances, we

need further experiments. To this end, Alhazen uses the gram-

mar as a producer of inputs and systematically explore alterna-

tives to the inputs observed so far. For each decision branch in

the tree, Alhazen generates further inputs to refine or refute

the association with the predicted outcome.

In our example, Alhazen would generate more inputs for each

branch in Figure 3. These satisfy the given conditions from the

tree, but otherwise are randomly chosen from the grammarÐ

say, cos(-444.5) for the left branch and cos(-446.5) for the

right branch. Since both pass, the original decision tree is inade-

quate. Instead,Alhazen refines the failure hypothesis such that

⟨number⟩ must be less than -673.25. Note that this hypothesis

is consistent with all observations so far.

As Alhazen generates further inputs for all branches, it even-

tually learns that the failure depends on sqrt() being called.

After 29 iterations, Alhazen delivers Figure 4, which correctly

describes the failure conditions: The ⟨function⟩ "sqrt" is used,

and the ⟨number⟩ is less than or equal to 0.

Beyond just pass and fail predicates, Alhazen can be applied to

obtain explanations and predictions for arbitrary predicates over

the program execution. For instance, one can use it to determine the

circumstances under which a specific output is produced; Figure 5

shows the circumstances for the output being 4 or more. (Note that

the trigonometric functions return values in the range [−1, 1].)

Since it requires no program analysis, Alhazen scales to arbi-

trary large programs. NetHack is an adventure games, consisting of

240424 lines of code. In January 2020, it was found that NetHack

was vulnerable to a buffer overflow [11]. Using a .ini grammar to

parse its configuration file, Alhazen easily determines that the

failure occurs as soon as some line in the configuration file has

more than 619 characters (Figure 6).

Alhazen can be seen as a full automation of the scientific

method, creating, refining and refuting hypotheses from obser-

vations over specifically constructed experiments to eventually

produce a theory of when the program exhibits a specific behavior.

1229

(c) Rule explanation.

Filter by page
limit (pages > 6)

Research
Question

AI4SE
Activity

Explanation
Techniques

21 Selected
conferences

6 Selected
journals

119 papers 14 papers

21 Selected
conferences

6 Selected
journals

119 papers 14 papers

Manual Search
Identify

relevant venues

Automated Search

IEEE Xplore ACM Digital
Library SpringerLink Wiely Scopus Web of

Science
Google
Scholar

305 papers 2,822 papers 23,696 papers 2,214 papers 35,407 papers 281 papers 27,925 papers

Automated Search

IEEE Xplore ACM Digital
Library SpringerLink Wiely Scopus Web of

Science
Google
Scholar

305 papers 2,822 papers 23,696 papers 2,214 papers 35,407 papers 281 papers 27,925 papers
Derive

search strings

Refine
search
strings

Export

Ev
al

ua
te

C
om

pl
em

en
t

92,783
papers
92,783
papers

Export

Export

Add 11
papers
Add 11
papers

29 papers29 papers

Study selection

Manual Search

Forward Backward

6 papers 23 papers

Forward Backward

6 papers 23 papers

Total 108 papers

Study Identification

Remove
duplicate studies

Check the venue,
title, and abstract

Scan full-text to select
primary studies

Conduct quality
assessment

Study Selection

34,652 papers 23,508 papers 494 papers 143 papers 97 papers

Anchor

SHAP

Backtracking

Counterfactuals

LIME

SmoothGrad

LLM

BreakDown

Decision Tree

Grad-CAM

RuleFit

Naïve Bayes

Explanation
Techniques for
AI4SE Studies

Multi-Head
Attention

GNN-Explainer

Self-Attention

Multi-Modal
Attention

Explanations
for AI4SE
Pipelines

Explanations
for AI4SE
Pipelines

Model-Dependent Techniques

Counterfactual
Explanation

Structural
Analysis

Casual
Inference

LIME SHAP BreakDownDeepLIFT

GradCAM Rule InductionDelta Debugging

Neuron Activation Difference

Model-Agnostic Techniques

GNNExplainer

GNN-LRP PGExplainer

SubgraphX

Decision Tree

Attention
Mechanism

Random
Forest

Self-Explainable Techniques

Graph Tensor Convolution
Neural Network

Feature
Backtracking

Neural Machine
Translation

Specification
Mining

Knowledge
Graph/Base

BERT Multi-Task Learning

Tailored Techniques

 14 src/mongo/shell/linenoise.cpp

 @@ -2762,7 +2762,17 @@ int linenoiseHistorySetMaxLen(int len) {

 # Get the HTML fragment inside the appropriate HTML element and then
 # extract the text from it.
 html_frag = extract_text_in(html, u"<div class='lyricbox'>")
- lyrics = _scrape_strip_cruft(html_frag, True)
+ if html_frag:
+ lyrics = _scrape_strip_cruft(html_frag, True)

- if lyrics and 'Unfortunately, we are not licensed' not in lyrics:
- return lyrics
+ if lyrics and 'Unfortunately, we are not licensed' not in lyrics:
+ return lyrics

347 347
348 348
349 349
350
 350
 351
351 352
352
353
 353
 354

 14 src/mongo/shell/linenoise.cpp

 @@ -2762,7 +2762,17 @@ int linenoiseHistorySetMaxLen(int len) {

 /* Save the history in the specified file. On success 0 is returned
 * otherwise -1 is returned. */
 int linenoiseHistorySave(const char* filename {
- FILE&* fp = fopen(filename, "wt");
 if (fp == NULL) {
 return -1;
 }

 for (int j = 0; j < historyLen; ++j) {
 if (history[j][0] != '\0') {
 fprintf(fp, "%s\n", history[j]);
 }
 }
- fclose(fp);
 return 0;
 }

2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777

 CVE-2016-6494 Detail
Description
The client in MongoDB uses world-readable permissions on .dbshell history
files, which might allow local users to obtain sensitive information by reading
these files.

Weakness Enumeration
CWE-ID CWE Name

CWE-200 Exposure of Sensitive Information to an Unauthorized Actor

CWE-ID CWE Name

CWE-200 Exposure of Sensitive Information to an Unauthorized Actor

VulTeller
The FILE before VERSION does not verify that use ofthe permissions on
history files, allows local guest to read sensitive information by reading these
files.

 14 src/mongo/shell/linenoise.cpp

 @@ -2762,7 +2762,17 @@ int linenoiseHistorySetMaxLen(int len) {

 /* Save the history in the specified file. On success 0 is returned
 * otherwise -1 is returned. */
 int linenoiseHistorySave(const char* filename {
- FILE&* fp = fopen(filename, "wt");
 if (fp == NULL) {
 return -1;
 }

 for (int j = 0; j < historyLen; ++j) {
 if (history[j][0] != '\0') {
 fprintf(fp, "%s\n", history[j]);
 }
 }
- fclose(fp);
 return 0;
 }

2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777

 CVE-2016-6494 Detail
Description
The client in MongoDB uses world-readable permissions on .dbshell history
files, which might allow local users to obtain sensitive information by reading
these files.

Weakness Enumeration
CWE-ID CWE Name

CWE-200 Exposure of Sensitive Information to an Unauthorized Actor

VulTeller
The FILE before VERSION does not verify that use ofthe permissions on
history files, allows local guest to read sensitive information by reading these
files.

XAI Techniques

Scope
Where is the XAI

approach focusing on?

Stage
How is the XAI

approach developed?

Portability
What is the

application scenario?

Local

Global

Ante-Hoc

Post-Hoc

Model-
Specific

Model-
Agnostic

time_days

last_state

>13.9

num_fix_files

<=13.9

time_days

Verified
Fixed

ReopenedReopened

Resolved
Fixed

Assigned
Fixed

� � �

���

Reopened

<=21.3

time_days

>21.3

Not ReopenedReopened

<=65.1>65.1

Reopened

>4

num_fix_files

<=4

Not Reopened

>2

time_days

<=2

Not Reopened

>7.25

� � �

<=7.25

Out-of-the-
Box Toolkit

(~34%)

Attention
Mechanism

(~10%)

Conceptual
Model

Semantic
Matching

Information
Retrieval

Specifications
Synthesis

Delta
Debugging

Auxiliary
TaskKnowledge

Graph

Linear
Regression

Rule
Induction

Formal
Reasoning

Others
(~13%)

Causal
Inference

Domain
Knowledge

(~20%)

FFT

Interpretable
Models
(~23%)

WheaCha

Probing

COMM 11.00

CountClassBase 8.0

CountOutput_Min 0.00

DDEV 3.00

CountClassDerived 2.0

Feature Value

IF Del. Lines=40 & Entropy=0.97 & #Dev=3 THEN predict=TRUE

IF Entropy=0.97 THEN predict=TRUE

Rule1

Rule2

 14 src/mongo/shell/linenoise.cpp

 @@ -2762,7 +2762,17 @@ int linenoiseHistorySetMaxLen(int len) {

 int linenoiseHistorySave(const char* filename {
 FILE&* fp = fopen(filename, "wt");
 if (fp == NULL) {
 return -1;
 }
 for (int j = 0; j < historyLen; ++j) {
 if (history[j][0] != '\0') {
 fprintf(fp, "%s\n", history[j]);
 }
 }
 fclose(fp);
 return 0;
 }

2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777

 CVE-2016-6494 Detail
Description
The client in MongoDB uses world-readable permissions on .dbshell history
files, which might allow local users to obtain sensitive information by reading
these files.

Weakness Enumeration
CWE-ID CWE Name

CWE-200 Exposure of Sensitive Information to an Unauthorized Actor

CWE-ID CWE Name

CWE-200 Exposure of Sensitive Information to an Unauthorized Actor

VulTeller
The FILE before VERSION does not verify that use ofthe permissions on
history files, allows local guest to read sensitive information by reading these
files.

VulTeller
The FILE before VERSION does not verify that use ofthe permissions on
history files, allows local guest to read sensitive information by reading these
files.

Prediction Label: Vulnerable
Explanation: The FILE before VERSION does not verify that use of
the permissions on history files, allows local guest to read sensitive
information by reading these files.

(d) Textual explanation.

What Do They Capture? - A Structural Analysis of Pre-Trained Language Models for Source Code ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

(a) A Python code snippet with its AST (b) Attention heatmap in Layer 5 (c) Attention distribution in Layer 5, Head 12

Figure 2: Visualization of self-attention distribution for a code snippet in CodeBERT. (a) A Python code snippet with its

corresponding AST. (b) Heatmap of the averaged attention weights in Layer 5. (c) Self-attention distribution in Layer 5, Head 12.

The brightness of lines indicates the attention weights in a specific head. If the connected nodes appear in the motif structure

of the corresponding AST, we mark the lines in red.

where 𝛼𝑖, 𝑗 (𝑐) is the attention that 𝑤𝑖 pays to 𝑤 𝑗 . The attention

weights are computed from the scaled dot-product of the query

vector of 𝑤𝑖 , and the key vector of 𝑤 𝑗 , followed by a softmax. In

the vectorized computing, a general attention mechanism can be

formulated as the weighted sum of the value vector V, using the

query vector Q and the key vector K:

Att(Q,K,V) = softmax

(
QK𝑇√
𝑑model

)
· V , (2)

where 𝑑model represents the dimension of each hidden representa-
tion. For self-attention,Q,K, andV aremappings of the previous hid-

den representation by different linear functions, i.e., Q = H𝑙−1W𝑙
𝑄 ,

K = H𝑙−1W𝑙
𝐾 , and V = H𝑙−1W𝑙

𝑉 , respectively. At last, the encoder

produces the final contextual representation H𝐿 = [h𝐿1 , . . . , h𝐿𝑛],
which is obtained from the last Transformer block.

In order to utilize the order of the sequential tokens, the “posi-

tional encodings” are injected to the input embedding.

w𝑖 = 𝑒 (𝑤𝑖) + 𝑝𝑜𝑠 (𝑤𝑖) , (3)

where 𝑒 denotes the word embedding layer, and 𝑝𝑜𝑠 denotes the po-
sitional embedding layer. Typically, the positional encoding implies

the position of code token based on sine and cosine functions.

2.2 Pre-Training Language Model

Given a corpus, each sentence (or code snippet) is first tokenized

into a series of tokens (e.g., Byte Pair Encoding, BPE [32]). Be-

fore BERT’s pre-training, it takes the concatenation of two seg-

ments as the input, defined as 𝑐1 = {𝑤1,𝑤2, . . . ,𝑤𝑛} and 𝑐2 =
{𝑢1, 𝑢2, . . . , 𝑢𝑚}, where 𝑛 and 𝑚 denote the lengths of two seg-

ments, respectively. The two segments are always connected by a

special separator token [SEP]. The first and last tokens of each se-

quence are always padded with a special classification token [CLS]

and an ending token [EOS], respectively. Finally, the input of each

training sample will be represented as follows:

𝑠 = [CLS],𝑤1,𝑤2, . . . ,𝑤𝑛︸������������︷︷������������︸
𝑐1

, [SEP], 𝑢1, 𝑢2, . . . , 𝑢𝑚︸�����������︷︷�����������︸
𝑐2

, [EOS] .

The input is then fed into a Transformer encoder. During BERT’s

pre-training, two objectives are designed for self-supervised learn-

ing, i.e., masked language modeling (MLM) and next sentence pre-

diction (NSP). In the masked language modeling, the tokens of an

input sentence are randomly sampled and replaced with the special

token [MASK]. In practice, BERT uniformly selects 15% of the input

tokens for possible replacement. Among the selected tokens, 80%

are replaced with [MASK], 10% are unchanged, and the left 10% are

randomly replaced with the selected tokens from vocabulary [8].

For next sentence prediction, it is modeled as a binary classification

to predict whether two segments are consecutive. Training positive

and negative examples are conducted based on the following rules:

(1) if two sentences are consecutive, it will be considered as a posi-

tive example; (2) otherwise, those paired segments from different

documents are considered as negative examples.

Recently, self-supervised learning using masked language mod-

eling has become a popular technique for natural language un-

derstanding and generation [5, 8, 9, 24, 34, 36]. In the context of

software engineering, several pre-trained code models have also

been proposed for program understanding. In this paper, we select

two representative pre-trained models for code representations: (1)

CodeBERT [11], which takes the concatenation of source code and

natural-language description as inputs, and pre-trains a language

model by masking the inputs; and (2) GraphCodeBERT [13], which

improves CodeBERT by incorporating the data-flow information

among variables into model pre-training.

3 MOTIVATION

Prior work in NLP has pointed out that the self-attention mecha-

nism in Transformer has the capability of capturing certain syntax

information in natural languages. Inspired by this, we visualize and

2379

(e) Visual explanation.

Fig. 6. Different formats of explanation.

speaking, model users aim to utilize XAI techniques to better understand the output of a deployed
model and make an informed decision, while designers focus on using XAI techniques during model
training and validation to verify that the model works as intended. In addition, the explanations
would be generated for distinct purposes at different levels of expertise even when considering a
single stakeholder. For instance, to assist software developers in understanding a defective commit,
some approaches simply highlight the lines of code that the model thinks are defective [140], while
others extract human-understandable rules [103], or even natural language descriptions [82] from
the defective code that can serve as actionable and reusable patterns or knowledge.

4.2 RQ2𝑏: What Format of Explanation Is Provided for Various SE Tasks?
Next, to analyze the formats of explanation being used in XAI4SE research, we provide a high-
level classification, along with descriptive statistics, as to why some formats of explanation were
used for particular SE tasks. In total, we observed five major explanation formats: Numeric, Text,
Visualization, Source Code, and Rule as illustrated in Figure 6.
Numeric. Numerical explanations, which are capable of conveying information in a compact
format, focus on quantifying the positive or negative contribution of an input variable to the model
prediction. Such importance scores can either be directly used as explanations [53, 174] or serve as
indicators to guide key feature selection [124]. Popular examples of numerical explanations are
LIME [108] and SHAP [78]. Esteves et al. [26] used SHAP values to understand the CK metrics [14]
that influenced the defectiveness of the classes. In the same context, Lee et al. [61] employed three
widely-used model-agnostic techniques, including LIME, SHAP, and BreakDown [122], to calculate
the contribution of each feature for defect models’ predictions. Xiao et al. [149] leveraged the local
explanations generated by LIME from the XGBoost model to analyze the contribution of variables
to sustained activity in different project contexts. To reflect the global behavior of a complex JIT
defect prediction model, Zheng et al. [174] employed SP-LIME, a variant of LIME, to analyze the

ACM Comput. Surv., Vol. 58, No. 4, Article 95. Publication date: October 2025.

A Systematic Literature Review on Explainability for ML/DL-based Software Engineering 95:15

relationship between the features in the model and the final prediction results. SP-LIME explicitly
selects representative and diverse (but not repetitive) samples, presenting a global view within the
allocated budget of maximal features. Sun et al. [124] used SHAP to guide the search for the feature
that has largest malicious magnitude, i.e., having the potential to be manipulated by the adversary,
to test the robustness of malware detectors.
Text. In contrast to numerical explanations, textual natural language descriptions are easier to
be comprehended by non-experts, offering clarity in understanding the behavior of intelligent
SE models. Such textual explanations can either be derived from scratch by using generative
models [82, 123, 166] or retrieved from external knowledge bases [71, 147]. For example, Zhang
et al. [166] leveraged a GRU-based decoder to generate vulnerability symptom- or reason-related
descriptive sentences step by step. Such summarization-styled explanations can effectively bridge
the cognitive gap between structured programming language and flatten natural language. Wu
et al. [147] built a semantic database based on malware key features and functional descriptions in
developer documentation, and leveraged the mapping relation between the malicious behaviors
and their corresponding semantics to generate reasonable descriptions that are easier for users
to understand. Inspired by similar/homogeneous vulnerabilities that have similar root causes or
lead to similar impacts, Ni et al. [93] first retrieved the most semantically similar problematic
posts from SO and prioritized the most useful response based on a quality-first sorting strategy.
Then, they employed the BERT-QA model [22] to extract the root cause, impact, and solution from
the answers to the given questions as useful and understandable natural language explanations.
Compared to generative models pre-trained on the human-labeled corpus, external knowledge
bases such as Stack Overflow and Wikipedia4 offer structured knowledge models that explicitly
store rich factual knowledge. Thus, they are well-known for their symbolic reasoning ability, which
generates explainable results, and avoids hallucinations originating from generated statements that
are factually incorrect.
Visualization. Besides explaining through numerical importance scores and textual natural lan-
guage descriptions, users can understand the behavior of the underlying model through the form of
visuals. Humans, in general, can process visual information faster and much easier as compared to
other information [88]. Common techniques involve visualizing attention heads for a single input
using bipartite graphs or heatmaps. They are simply disparate visual representation of attentions,
one as a graph and the other as a matrix. Wang et al. [138] visualized the attention weights of the
most important words and phrases that have contributed to the model’s predictions. In addition,
some approaches developed interactiveUser Interface (UI) to provide visual explanations [51, 135].
For instance, Jiang et al. [51] designed several contribution mining algorithms to infer the key
elements in code that contribute to the generation of the key phrases in the comments. When a
developer intends to comprehend the code, the UI loads the auto-generated comments and presents
to the developers the graphic illustration by coloring the important phrases and the corresponding
parts in the source code. In this way, the developer can check whether the auto-comments correctly
describe the intention of the code.
Source Code. Some attempts borrowed certain classical techniques, such as programmutation [121]
and Delta Debugging (DD) [163], from the field of software testing to search for important code
snippets positively contributing to the model predictions. For instance, Geng et al. [38] identified
important code tokens contributing to the generation of a specific part of the summarization by
checking which meaningful words disappeared in any of the summarization newly generated from
mutants. Rabin et al. [104] leveraged DD to simplify a piece of code into the minimal fragment

4https://www.wikipedia.org/

ACM Comput. Surv., Vol. 58, No. 4, Article 95. Publication date: October 2025.

https://www.wikipedia.org/

95:16 S. Cao et al.

Fig. 7. Explanation formats by SE task and XAI techniques taken.

without reversing it original prediction label. The reduction process continues until the input data
is either fully reduced (to its minimal components, depending on the task) or any further reduction
would corrupt the prediction. In contrast to debugging-based techniques that can be applied to any
DL architecture, Li et al. [65] employed a GNN-specific explanation framework, GNNExplainer
[160], to simplify the target code instance to a minimal statements subset.
Rule. Rule, which can be organized in the form of IF-THEN-ELSE statements with AND/OR oper-
ators, is a schematic and logic format. Despite its complexity compared to visualization and natural
language description, rule-based explanation is still intuitive for humans and useful for expressing
combinations of input features and their activation values. Generally, these rules approximate a
black-box model but have higher interpretability. Zou et al. [177] identified important code tokens
whose perturbations lead to the variant examples having a significant impact on the prediction
of the target model via heuristic searching, and trained a decision tree-based regression model to
extract human-understandable rules for explaining why a particular example is predicted into a
particular label. To explain the individual predictions of the black-box global model, Pornprasit
et al. [103] built a RuleFit-based local surrogate model, which combined the strengths of decision
tree and linear model, to understand the logical reasons learned from the rule features. Cito et al.
[16] proposed a rule induction technique which produced decision lists based on features and
mispredicted instances to explain the reasons for mispredictions.

4.2.1 Exploratory Data Analysis. Figure 7 shows a breakdown of the relationships between the
SE tasks, the explanation techniques taken, and explanation formats. We found that the distribution
of different explanation formats is relatively even except Visualization (≈9%), and the most common
format being used is Numeric (≈27%). The primary reason is that numerical features are a common
source of information across all aspects of data-driven methodologies. SE tasks such as Bug/Defect
Prediction and Code Smell Detection commonly use a collection of hand-crafted numerical features
(e.g., code metrics [14], smells [100] and permission and API calls [101]) to train a model. Measuring
the relevance of each input feature to a model’s prediction is intuitive and has been well established
within the field of XAI, hence it is not surprising that the majority of reviewed studies focus on

ACM Comput. Surv., Vol. 58, No. 4, Article 95. Publication date: October 2025.

A Systematic Literature Review on Explainability for ML/DL-based Software Engineering 95:17

this format. We also noticed that visual explanation is less commonly used, only accounting for a
total of 10 primary studies. One possible reason contributing to its relative lack of adoption lies in
that, although visualization can provide a fast and straightforward explanation for practitioners
(e.g., a developer, domain expert, or end-user) who are inexperienced in ML/DL [120], it can only
convey limited information and requires post-processing for further use.

In addition to the prevalence, we observed that the formats of explanation varied even in a
single SE task. As an example, the explanations generated for binary vulnerability detectors in our
surveyed studies can be text (e.g., vulnerability descriptions [93, 166] and types [123, 175]), source
code (e.g., code statements [65, 127]), or rules [177]. This diversity helps to satisfy the personalized
needs of the stakeholders who have different intents and expertise.

- ▶ RQ2—Summary ◀

—Our exploratory data analysis revealed five commonly used XAI techniques, including OT
(≈34%), IM (≈23%), DK (≈20%), AM (≈10%), as well as a subset of other custom, highly
tailored approaches (≈13%).

—We summarized the selection strategies for XAI techniques in SE tasks into three main
categories: Task Fitness, Model Compatibility, and Stakeholder Preference.

—A variety of explanation formats have been explored in our surveyed studies, with the main
formats utilized being numeric (≈27%), text (≈23%), visualization (≈9%), source code (≈20%),
and rule (≈20%).

—We found a strong correlation between the SE tasks, the explanation techniques taken, and
explanation formats. Additionally, the formats of explanation also varied even in a single SE
task. This diversity helps to satisfy the personalized needs of the stakeholders who have
different intents and expertise.

5 RQ3: How Well Do XAI Techniques Perform in Supporting Various SE Tasks?
Evaluating the effectiveness of proposed solutions against existing datasets and employing baseline
comparisons is a standard practice in AI4SE research. In this RQ, we endeavor to investigate the
influence of XAI4SE research by scrutinizing the effectiveness of techniques proposed in the studies
under consideration. Our analysis primarily focuses on evaluating metrics on a task-specific basis,
aiming to encapsulate the prevailing benchmarks and baselines within the field of XAI4SE research.

5.1 RQ3𝑎: What Baseline Techniques Are Used to Evaluate XAI4SE Approaches?
For RQ3𝑎, we scrutinize the baseline techniques employed for comparative analysis in our selected
primary studies. Although common baselines for particular SE tasks were identified, it was noted
that a substantial portion of the literature autonomously developed unique baselines. The extensive
variety and volume of these baselines precluded their detailed inclusion within the body of this
manuscript. Therefore, we included the listing of baselines that each article compared against on
our interactive website at https://riss-vul.github.io/xai4se-paper/. Figure 8(a) briefly analyzes the
distribution of baseline usage in XAI4SE studies. Approximately ≈60% of the studies reviewed do
not engage in comparisons with any baseline, whereas a minority contrasts their findings with
more than four distinct methods (≈8.3%). It was observed that numerous baseline techniques consist
of established white-box models with transparent algorithms or conventional expert systems. This
trend may be attributed, in part, to the nascent stage of XAI4SE research, which has resulted in a
limited range of existing XAI-centric comparatives. As XAI4SE progresses towards maturity, an
evolution towards evaluations incorporating benchmarks against established XAI-centric method-
ologies is anticipated. Furthermore, it was noted that the selection of baseline techniques exhibits a

ACM Comput. Surv., Vol. 58, No. 4, Article 95. Publication date: October 2025.

https://riss-vul.github.io/xai4se-paper/

95:18 S. Cao et al.

3~4 Baselines
11.1%Not Applicable

59.3%

>=5 Baselines
8.3%

1~2 Baselines
21.3%

(a) Distribution of baseline usage.

Not Applicable
31.5%

Available Link
68.5%

(b) Approach availability.

Fig. 8. Statistical information of baseline techniques and XAI4SE approaches.

high degree of specificity, varying significantly even among studies addressing identical SE tasks.
For example, to evaluate the effectiveness of their proposed explainable vulnerability detection
approaches, eight out of 14 primary studies employed at least two baselines for evaluation, while
only two articles [15, 46] overlap slightly in terms of the baselines.

A concerning trend identified in our review is the lack of publicly accessible implementations
for many XAI4SE approaches. We conducted a manual inspection of all links provided within each
study. In instances where a link to a replication package was available, we assessed its contents for
source code and relevant documentation. Absent any direct links, we also endeavored to locate
either the original replication package or an equivalent reproduction package on GitHub using the
title of the article as a search query. As depicted in the pie chart in Figure 8(b), approximately only
68% of the primary studies offer accessible replication packages. Among the remaining studies with
replication packages, a considerable portion of them propose XAI techniques for specific SE tasks
for the first time, such as Mining Software Repositories [71] and OSS Sustainability Prediction [149].
This, in part, explains the proliferation of highly individualized baseline approaches. Researchers
often lack access to common baselines for comparison, compelling them to implement their own
versions. The robustness of results in such articles may be compromised, as many do not provide
information about the baselines used. Moreover, distinct implementations of the same baselines
could lead to confounding results when assessing purported improvements. While we anticipate
that the set of existing publicly available baselines will improve over time, we also recognize the
necessity for well-documented and publicly available baselines, accompanied by guidelines that
dictate their proper dissemination.

5.2 RQ3𝑏: What Benchmarks Are Used for These Comparisons?
For RQ3𝑏, we investigated the collection strategies of benchmarks in XAI4SE studies. As can be
seen from the data in Figure 9 (left), only 36 (≈33%) studies used previously curated benchmarks
for evaluating XAI4SE approaches. The selection of open-source benchmarks is often motivated by
their compelling nature in assessing the performance of AI-driven methodologies, which facilitates
the reproducibility and replication by subsequent studies. Given the nascent emergence of XAI4SE
research, there is an observed scarcity of appropriate benchmark datasets. This also explains why
there is a considerable amount (28.7%) of self-generated benchmarks. This trend within XAI4SE is
worrying, as there are few instances where XAI approaches can appropriately compare against one
another with available benchmarks. In our online repository, we recorded the accessible benchmark
links provided by primary studies. Our aim is to assist researchers by offering insights into the
available benchmarks for evaluating methodologies within distinct SE tasks. Furthermore, we

ACM Comput. Surv., Vol. 58, No. 4, Article 95. Publication date: October 2025.

A Systematic Literature Review on Explainability for ML/DL-based Software Engineering 95:19

36

31

9

32

Requirement C
lassif

ica
tion

Code Understa
nding

Program Synthesis

Code Summariza
tion

Code Search

API R
ecommendation

Test C
ase-Related

Debugging

Vulnerability
 Detectio

n

Bug/Fault L
ocaliza

tion

Program Repair

Malware/Anomaly Detectio
n

Bug/Defect Predicti
on

OSS Susta
inability

 Predicti
on

Root C
ause Analysis

Code Review

Code Smell D
etectio

n

Code Clone Detectio
n

Bug Report-R
elated

Mining Softw
are Reposito

ries

Configuration Extra
polation

Effort/C
ost E

stim
ation

Developer R
ecommendation

0
2
4
6
8

10
12
14
16
18
20

Previous Benchmark

Self-Generated

Industry-Provided

Not Available

0 12 24 36

Fig. 9. Collection strategies of benchmarks by SE task.

Hybrid
17 (15.7%)

Quantitative
26 (24.1%)

Qualitative
34 (31.5%)

Not Applicable
31 (28.7%)

Fig. 10. Evaluation strategies of XAI techniques.

advocate for future scholars to share their self-created benchmarks publicly, thereby furnishing a
valuable resource that facilitates not only comparative analyses among different methodologies but
also broadens the dataset accessible for Explainable AI techniques.

While the adoption of pre-existing benchmarks was infrequent across our surveyed studies, we
did observe a subset of benchmarks that recurred within our primary studies. A comprehensive
delineation of the types of benchmarks employed in these primary studies is depicted in Figure 9
(right). For vulnerability detection, we found that the Big-Vul [31] dataset was used frequently,
including evaluating the accuracy of the key aspects extracted from the detected vulnerabilities (e.g.,
vulnerable statements [46, 65] and vulnerability types [34]). Additionally, the dataset released by
Yatish et al. [157] was employed for benchmarking prior XAI techniques targeting defect prediction
models [53, 61].

5.3 RQ3𝑐: What Evaluation Metrics Are Employed to Measure XAI4SE Approaches?
With an increasing number of XAI techniques, the demand grows for suitable evaluation metrics
[3, 7, 42]. This need is not only recognized by the AI community, but also by the SE community
as evaluating the performance of XAI techniques is a crucial aspect of their development and
deployment [109]. Figure 10 describes the distribution of evaluation strategies found in this SLR.
The absence of objective, quantifiable evaluation is not surprising, given the scarcity of reliable
benchmarks that are publicly available, as discussed above. In our analysis of utilized evaluation
strategies within work on XAI4SE, we observed that nearly one-third (≈32%) of primary studies
only adopted anecdotal evidence or user study, instead of quantitative metrics to evaluate their
proposed approaches.That’s to be expected because traditional performancemetrics exist to evaluate

ACM Comput. Surv., Vol. 58, No. 4, Article 95. Publication date: October 2025.

95:20 S. Cao et al.

Table 3. Metrics Used for Evaluation

Property Description Metric References

Correctness How faithful the explanation is w.r.t the black box.

%Consistency [103, 151]
PCR [12, 177]
Statistical Test [103, 151, 162]
Distance-based [103, 151, 162]
R2 [53, 69]
RBO [61, 162]

Consistency How deterministic the explanation approach is. Statistical Test [4, 69, 79]
Continuity How continuous and generalizable the explanation function is. Similarity-based [46, 66]
Contrastivity How discriminative the explanation is w.r.t. other events or targets. %Unique [103, 151]

Compactness The size of the explanation. Reduction Ratio [104, 139]
#Rules [55, 83, 102]

Coherence How accordant the explanation is with prior knowledge and beliefs.

Alignment-based [58, 82, 123, 143, 166]
Classification-based [9, 15, 16, 34, 39, 46, 113, 175]
Ranking-based [65, 140, 140, 170]
Statistical Test [1, 51, 97, 98]

Efficiency The average runtime of generating one explanation per instance. Runtime [12, 104, 139, 162]

prediction accuracy and computational complexity, while auxiliary criteria such as explainability
may not be easily quantified [27]. Among 43 articles that performed quantitative evaluation, we
found that the SE community also has yet to agree upon standardized evaluation metrics due
to the absence of ground truths. Furthermore, due to the wide range of objectives associated
with explainability in SE tasks, relying solely on a single evaluation metric may not adequately
reflect the full spectrum of an XAI tool’s performance. Consequently, researchers frequently
utilize a variety of evaluation metrics, each designed to measure specific aspects of explainability.
According to the best practice within the field of XAI [91], these quantitative metrics can be
clustered from a multi-dimensional view, named Co-12 properties. Table 3 describes each Co-12
property we identified, while listing the evaluation metrics that were mainly related with this
property and the articles that applied these metrics. Since over 30 unique metrics are adopted
by our collected primary studies, which is difficult to present them all in this SLR, we listed 16
main metrics across six major Co-12 properties, where each metric was researched by no less than
two studies.
Correctness. Correctness describes the degree at which an explanation technique approximates the
behavior (either locally or globally) of the target model. In certain primary studies, it is also referred
to as Fidelity [13, 66]. Common metrics chosen to evaluate correctness include %Consistency,
Positive Classification Rate (PCR) [43], Statistical Test, Distance-based, 𝑅2, and Ranked Biased
Overlap (RBO) [141]. For instance, RBO is a similarity measure (assessed within the ranges of [0,
1]) that quantifies the differences between indefinite ranked lists. A higher value signifies stronger
alignment or closeness between the explanations generated by different explainers. Given that
numerical explanation (e.g., feature importance) is one of the most common explanation formats in
our surveyed articles, the quantification of differences between feature importance is crucial for
assessing model trustworthiness.
Consistency. In addition to correct results, the generated explanations need to be consistent. That
is, two models that give the same outputs for all inputs should have the same explanations in
order to be useful for an expert. A common evaluation approach is statistical test, which computes
the statistical differences among multiple runs on the same instance. For example, Awal et al. [4]
assessed inconsistency by running the same explanation technique on 500 instance (100 consecutive
iterations per instance) and measuring the rank difference of each metric. To measure whether the
explanation results between two executions were statistically different, they applied the Wilcoxon
Signed-Rank Test [145] and utilized Cliff’s |𝛿 | effect size [18] to quantify the extent of the differences.

ACM Comput. Surv., Vol. 58, No. 4, Article 95. Publication date: October 2025.

A Systematic Literature Review on Explainability for ML/DL-based Software Engineering 95:21

Continuity. Previous work [40] has demonstrated that slight variations in the input samples
can confuse the explanation results. If the model response to similar samples varies signifi-
cantly, not only will it not convince the experts, but it will lead them to doubt the reliability
of the underlying predictions. Consequently, Continuity is proposed to describe how continuous
and generalizable the explanation function is. In our identified studies, similarity-based metrics,
such as Dice Coefficient [46] and Jaccard Similarity [66], are often utilized to measure the con-
tinuity of generated explanations. Higher continuity indicates a better generalizability to new
contexts.
Contrastivety. Contrastivety aims to describe the discriminativeness of an explanation. Intuitively,
the explanation for a particular target or model output should be different from an explanation
for another target. %Unique is the most frequent metric, used in two studies [103, 151]. %Unique
measures the percentage of unique explanations generated by each technique.The higher percentage
of unique explanations indicates that the explainer can effectively generate a more specific (i.e.,
less duplicate) explanation to the target instance.
Compactness. To avoid increasing the human cognitive load, explanations should be sparse, short
and not redundant. As a consequence, compactness is defined to measure the size of generated
explanations. Metrics like Reduction Ratio and #Rules are the most commonly used, appearing in
two and three studies, respectively. For instance, Rabin et al. [104] employed size reduction ratio of
input programs to evaluate the conciseness of generated explanations.
Coherence. In many scenarios, even when interacting with the same model, stakeholders who have
different intents and expertise may consume explanations for distinct objectives. Hence, assessing
to what extent the explanation is consistent with relevant background knowledge, beliefs and
general consensus is necessary. The most commonly used coherence metrics are Alignment-based
(e.g., ROUGE-L and BLEU), Classification-based (e.g., Accuracy, Precision, and Recall), Ranking-
based (e.g., Top K-based and MRR), and Statistical Test. For example, Fu et al. [34] employed
Accuracy and Weighted F1-score to evaluate the performance of vulnerability classification. Sun
et al. [123] adopted ROUGE-1/2/L to measure the usefulness of generated key aspects for alert
prediction.

In addition to these popular functional metrics, we also observed a limited number of non-
functional metrics. One representative example is Efficiency, which is used in nine studies [12,
104, 139, 162]. Most SE tasks, such as code search and code completion, have a high demand for
the response efficiency of AI models, i.e., preferring tools/approaches providing actionable results
within acceptable time cost, and explanations are no exception. Given that explainability mostly
serves as a by-product of model outputs, approaches requiring higher computation overhead are
unlikely to be adopted by the audience, even if they achieve promising performance in terms of
other aspects.

- ▶ RQ3—Summary ◀

—The analysis indicated a notable scarcity of well-documented and reusable baselines or
benchmarks for work on XAI4SE. Approximately 28.7% of the benchmarks employed in the
evaluations of our studied approaches were self-generated, with a significant portion not
being publicly accessible or reusable.

—We noticed that there is no consensus on evaluation strategies for XAI4SE studies, and in
many cases, the evaluation is only based on specific properties, such as correctness and
coherence, or researchers’ subjective intuition of what constitutes a good explanation.

ACM Comput. Surv., Vol. 58, No. 4, Article 95. Publication date: October 2025.

95:22 S. Cao et al.

6 Discussion
In this section, we discuss current challenges (Section 6.1) and highlight promising opportunities
(Section 6.2) for conducting future work on XAI4SE.

6.1 Challenges
Challenge 1: Lack of Consensus on Explainability in SE. One of the major challenges in devel-
oping explainable approaches for AI4SE models is the lack of formal consensus on explainability
within the field of SE. As shown in the earlier sections, numerous points of view are proposed when
trying to articulate explainability for a specific SE task. For instance, to assist software developers
in understanding defective commit, some approaches simply highlight the lines of code that the
model thinks are defective [140], while others extract human-understandable rules [103], or even
natural language descriptions [82] from the defective code that can serve as actionable and reusable
patterns or knowledge. Although this diversity can meet the distinct requirements of audiences with
different levels of expertise, it greatly increases the difficulty of establishing a unified framework
which provides common ground for researchers to contribute toward the properly defined needs
and challenges of the field.
Challenge 2: Tradeoff between Performance and Explainability. For some real-world tasks, a
model with higher accuracy usually offers less explainability. Such Performance-Explainability
Tradeoff (PET) dilemma often results in user hesitation when choosing between black-box models
and inherently transparent models. While certain studies [110, 111] indicate that black-box models
performing complex operations do not necessarily result in better performance than simpler
ones, it is often the case for advanced SE models built upon immense amounts of structured and
unstructured data. This challenge highlights the necessity of flexibly selecting XAI techniques
according to various factors, such as the characteristics (e.g., input/output format and model
architecture) of different SE tasks, resource availability (e.g., time cost), and consideration of risk
(e.g., ethics and legality). For example, explainability may be particularly important to avoid bias
in a developer recommendation system, while performance might be prioritized in an AI-aided
coding scenario.
Challenge 3: Disconnection between Academic Efforts and Industry Needs.The deployment
of XAI techniques in SE practice, particularly security-critical tasks like vulnerability detection [10],
necessitates rigorous validation to satisfy not only effectiveness, but also robustness, controllability,
and other special concerns. Here, the controllability means that each user should be shown the most
complex explanation this user can still grasp, i.e., giving control back to the user. This property is
important because users can adapt the explanation to their needs [32].This proves challenging given
the complex and dynamic nature of SDLC. In addition, due to the different intents and expertise of
audiences, a single explanation format may not be applicable to everyone. For instance, while visual
explanation can be attractive for the layperson since it is natural and intuitive, it could potentially
overwhelm domain experts with superfluous information, thereby increasing their cognitive load
and rendering the tool counterproductive [158].

6.2 Opportunities
Opportunity 1: Application on Underexplored and Complex SE Tasks. Throughout our
study, it was clear that XAI techniques have been widely used in certain SE tasks to support users
in decision-making or improve the transparency of AI models. However, the current application
of XAI techniques in some SE activities remains relatively sparse. As shown in Figure 2(a), not
many studies focus on software requirements and design and software management. This unveils a
substantial opportunity: broadening the application of XAI techniques to these under-explored

ACM Comput. Surv., Vol. 58, No. 4, Article 95. Publication date: October 2025.

A Systematic Literature Review on Explainability for ML/DL-based Software Engineering 95:23

research topics. We suggest that future work should concentrate on two aspects. First, for emerging
SE tasks that have only recently benefited from ML/DL, integrating off-the-shelf XAI techniques
into existing research workflows as a component rather than developing end-to-end solutions
appears more pragmatic. For example, compared to conventional tools which heavily rely on
pre-defined templates or grammars, leveraging the powerful capability of LLMs on code and natural
language comprehension to generate formal program specifications [80], fix vulnerabilities [148],
and analyze developers’ sentiment [169] have shown promising results. By combining them with
established techniques [84], we can achieve reliable and efficient explanations in a seamless manner.
Second, for complex SE tasks that have yet to be fully explored by the research community, such as
Code Search and API Recommendation, it is promising to conduct user survey (e.g., interviewing
relevant industrial practitioners) to understand their perceptions.
Opportunity 2: Customizing Task-oriented XAI. In themidst of our analysis it became clear that
most approaches used to provide explanations for AI-driven SE models are directly inherited from
off-the-shelf XAI techniques without any customization. Unfortunately, existing XAI techniques,
originally not designed for SE tasks, likely generate suboptimal or even misleading explanations.
Given these reasons, we recognize a research opportunity to customize explanation approaches
more suitable for SE tasks. In this regard, the integration with DK appears to be the most promising
direction to explore. For example, security experts can construct a vulnerability knowledge base by
extracting multi-dimensional information from trusted and public-available intelligence sources
such as Snyk5 and National Vulnerability Database6 (NVD). This data- and knowledge-driven
strategy fosters not only users’ understanding of how a black-box model works, but also their
active engagement in its development and evolution.
Opportunity 3: Combination of Various Explanation Formats. An obvious trend in our anal-
ysis was that different explanation formats are commonly used alone. Given their complementarity
(e.g., source code explanations and textual explanation are complementary to each other in an
AI-assisted programming support context), we believe there is an opportunity to combine diverse
formats of explanation for a more robust and complete decision performance, and improves the
likelihood of having at least one explanation that the user understands.
Opportunity 4: Human-in-the-Loop Interaction. Exploring a more user-centric approach that
provides users with greater agency could lead to results that are orthogonally beneficial to those
found using more common techniques. To effectively support human decision-making, there is an
escalating need for interactive XAI tools that empower users to actively engage with and explore
black-box SE models, thereby facilitating a profound comprehension of the models’ mechanisms
and their explainability. However, most reviewed works leave aside important aspects pertaining to
the XAI tool’s interaction with SE practitioners as an AI assistant. Several studies have highlighted
that users had more trust when presented with interactive explanations [142]. Thus, one possible
research interest could be in the application of human-AI dialogue agent. For instance, LLMs such
as ChatGPT can serve as the main controller or “brain” to guide users to clarify their vague intents
through multi-round dialogue and return personalized explanations by having access to one or
more XAI techniques.
Opportunity 5: Curating High-quality and Multi-dimensional Benchmarks. Evaluating
the newly proposed approach over baseline techniques on a benchmark is developing into a stan-
dard practice in SE research. Nevertheless, existing benchmarks may face issues related to quality,
availability, and personalization. First, ground truth information scarcity is still a major issue since

5https://snyk.io/
6https://nvd.nist.gov/

ACM Comput. Surv., Vol. 58, No. 4, Article 95. Publication date: October 2025.

https://snyk.io/
https://nvd.nist.gov/

95:24 S. Cao et al.

Filter by page
limit (pages > 6)

Research
Question

AI4SE
Activity

Explanation
Techniques

21 Selected
conferences

6 Selected
journals

119 papers 14 papers

21 Selected
conferences

6 Selected
journals

119 papers 14 papers

Manual Search
Identify

relevant venues

Automated Search

IEEE Xplore ACM Digital
Library SpringerLink Wiely Scopus Web of

Science
Google
Scholar

305 papers 2,822 papers 23,696 papers 2,214 papers 35,407 papers 281 papers 27,925 papers

Automated Search

IEEE Xplore ACM Digital
Library SpringerLink Wiely Scopus Web of

Science
Google
Scholar

305 papers 2,822 papers 23,696 papers 2,214 papers 35,407 papers 281 papers 27,925 papers
Derive

search strings

Refine
search
strings

Export

Ev
al

ua
te

C
om

pl
em

en
t

92,783
papers
92,783
papers

Export

Export

Add 11
papers
Add 11
papers

29 papers29 papers

Study selection

Manual Search

Forward Backward

6 papers 23 papers

Forward Backward

6 papers 23 papers

Total 108 papers

Study Identification

Remove
duplicate studies

Check the venue,
title, and abstract

Scan full-text to select
primary studies

Conduct quality
assessment

Study Selection

34,652 papers 23,508 papers 494 papers 143 papers 97 papers

Anchor

SHAP

Backtracking

Counterfactuals

LIME

SmoothGrad

LLM

BreakDown

Decision Tree

Grad-CAM

RuleFit

Naïve Bayes

Explanation
Techniques for
AI4SE Studies

Multi-Head
Attention

GNN-Explainer

Self-Attention

Multi-Modal
Attention

Explanations
for AI4SE
Pipelines

Explanations
for AI4SE
Pipelines

Model-Dependent Techniques

Counterfactual
Explanation

Structural
Analysis

Casual
Inference

LIME SHAP BreakDownDeepLIFT

GradCAM Rule InductionDelta Debugging

Neuron Activation Difference

Model-Agnostic Techniques

GNNExplainer

GNN-LRP PGExplainer

SubgraphX

Decision Tree

Attention
Mechanism

Random
Forest

Self-Explainable Techniques

Graph Tensor Convolution
Neural Network

Feature
Backtracking

Neural Machine
Translation

Specification
Mining

Knowledge
Graph/Base

BERT Multi-Task Learning

Tailored Techniques

 14 src/mongo/shell/linenoise.cpp

 @@ -2762,7 +2762,17 @@ int linenoiseHistorySetMaxLen(int len) {

 # Get the HTML fragment inside the appropriate HTML element and then
 # extract the text from it.
 html_frag = extract_text_in(html, u"<div class='lyricbox'>")
- lyrics = _scrape_strip_cruft(html_frag, True)
+ if html_frag:
+ lyrics = _scrape_strip_cruft(html_frag, True)

- if lyrics and 'Unfortunately, we are not licensed' not in lyrics:
- return lyrics
+ if lyrics and 'Unfortunately, we are not licensed' not in lyrics:
+ return lyrics

347 347
348 348
349 349
350
 350
 351
351 352
352
353
 353
 354

 14 src/mongo/shell/linenoise.cpp

 @@ -2762,7 +2762,17 @@ int linenoiseHistorySetMaxLen(int len) {

 /* Save the history in the specified file. On success 0 is returned
 * otherwise -1 is returned. */
 int linenoiseHistorySave(const char* filename {
- FILE&* fp = fopen(filename, "wt");
 if (fp == NULL) {
 return -1;
 }

 for (int j = 0; j < historyLen; ++j) {
 if (history[j][0] != '\0') {
 fprintf(fp, "%s\n", history[j]);
 }
 }
- fclose(fp);
 return 0;
 }

2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777

 CVE-2016-6494 Detail
Description
The client in MongoDB uses world-readable permissions on .dbshell history
files, which might allow local users to obtain sensitive information by reading
these files.

Weakness Enumeration
CWE-ID CWE Name

CWE-200 Exposure of Sensitive Information to an Unauthorized Actor

CWE-ID CWE Name

CWE-200 Exposure of Sensitive Information to an Unauthorized Actor

VulTeller
The FILE before VERSION does not verify that use ofthe permissions on
history files, allows local guest to read sensitive information by reading these
files.

 14 src/mongo/shell/linenoise.cpp

 @@ -2762,7 +2762,17 @@ int linenoiseHistorySetMaxLen(int len) {

 /* Save the history in the specified file. On success 0 is returned
 * otherwise -1 is returned. */
 int linenoiseHistorySave(const char* filename {
- FILE&* fp = fopen(filename, "wt");
 if (fp == NULL) {
 return -1;
 }

 for (int j = 0; j < historyLen; ++j) {
 if (history[j][0] != '\0') {
 fprintf(fp, "%s\n", history[j]);
 }
 }
- fclose(fp);
 return 0;
 }

2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777

 CVE-2016-6494 Detail
Description
The client in MongoDB uses world-readable permissions on .dbshell history
files, which might allow local users to obtain sensitive information by reading
these files.

Weakness Enumeration
CWE-ID CWE Name

CWE-200 Exposure of Sensitive Information to an Unauthorized Actor

VulTeller
The FILE before VERSION does not verify that use ofthe permissions on
history files, allows local guest to read sensitive information by reading these
files.

XAI Techniques

Scope
Where is the XAI

approach focusing on?

Stage
How is the XAI

approach developed?

Portability
What is the

application scenario?

Local

Global

Ante-Hoc

Post-Hoc

Model-
Specific

Model-
Agnostic

time_days

last_state

>13.9

num_fix_files

<=13.9

time_days

Verified
Fixed

ReopenedReopened

Resolved
Fixed

Assigned
Fixed

� � �

���

Reopened

<=21.3

time_days

>21.3

Not ReopenedReopened

<=65.1>65.1

Reopened

>4

num_fix_files

<=4

Not Reopened

>2

time_days

<=2

Not Reopened

>7.25

� � �

<=7.25

Out-of-the-
Box Toolkit

(~34%)

Attention
Mechanism

(~10%)

Conceptual
Model

Semantic
Matching

Information
Retrieval

Specifications
Synthesis

Delta
Debugging

Auxiliary
TaskKnowledge

Graph

Linear
Regression

Rule
Induction

Formal
Reasoning

Others
(~13%)

Causal
Inference

Domain
Knowledge

(~20%)

FFT

Interpretable
Models
(~23%)

WheaCha

Probing

COMM 11.00

CountClassBase 8.0

CountOutput_Min 0.00

DDEV 3.00

CountClassDerived 2.0

Feature Value

IF Del. Lines=40 & Entropy=0.97 & #Dev=3 THEN predict=TRUE

IF Entropy=0.97 THEN predict=TRUE

Rule1

Rule2

 14 src/mongo/shell/linenoise.cpp

 @@ -2762,7 +2762,17 @@ int linenoiseHistorySetMaxLen(int len) {

 int linenoiseHistorySave(const char* filename {
 FILE&* fp = fopen(filename, "wt");
 if (fp == NULL) {
 return -1;
 }
 for (int j = 0; j < historyLen; ++j) {
 if (history[j][0] != '\0') {
 fprintf(fp, "%s\n", history[j]);
 }
 }
 fclose(fp);
 return 0;
 }

2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777

 CVE-2016-6494 Detail
Description
The client in MongoDB uses world-readable permissions on .dbshell history
files, which might allow local users to obtain sensitive information by reading
these files.

Weakness Enumeration
CWE-ID CWE Name

CWE-200 Exposure of Sensitive Information to an Unauthorized Actor

CWE-ID CWE Name

CWE-200 Exposure of Sensitive Information to an Unauthorized Actor

VulTeller
The FILE before VERSION does not verify that use ofthe permissions on
history files, allows local guest to read sensitive information by reading these
files.

VulTeller
The FILE before VERSION does not verify that use ofthe permissions on
history files, allows local guest to read sensitive information by reading these
files.

Prediction Label: Vulnerable

Explainable AI for Software Engineering Guidelines
A Checklist

 Not su itable
for practical u se

AI4SE
Solu tion

AI4SE
Solu tion

Guideline 1
R equ irement

Analysis

Guideline 2
Approach
Selection

Guideline 3
Mu lti-Dimensional

Evalu ation

Guideline 4
Feedback-Driven

Optimization

Guideline 5
Legal and Ethical

Considerations

Passed Mostly Passed Not Passed Not Passed Partially Passed

Su itable for
practical u se

Fig. 11. Guidelines for applying XAI to SE research.

the process of data annotation is expertise-intensive and time-consuming for large-scale datasets.
This is even more critical in the XAI field, where additional (and commonly multi-modal) anno-
tations are required (e.g., textual descriptions and structured decision-making rules). A potential
solution involves promoting cooperation and collaboration between the industry and academia.
We have started to see efforts in constructing high-quality benchmarks with annotated explanatory
information in other domains, such as the FFA-IR dataset [62] for evaluating the explainability
on medical report generation. Second, the most adopted evaluation approach in current XAI4SE
studies is to resort to the practitioners’ expertise. However, considering the variability in experts’
opinions, this strategy is particularly biased and subjective [91]. Given that such human feedback
is immensely valuable in understanding the strengths and weaknesses of XAI techniques, a clear
avenue for improvement is to standardize a protocol for human evaluation of these systems by SE
practitioners.

7 Guidelines for Future Work on XAI4SE
In this section, we synthesized a checklist with five prescribed steps that should aid in guiding
researchers through the process of applying XAI in SE, as illustrated in Figure 11.
Guideline 1: Requirement Analysis.This first step focuses on clarifying specific needs of distinct
stakeholders for a certain SE task. For example, for end-users (e.g., developers and practitioners)
which do not have technical knowledge in underlying AI models, the format and context of an
explanation should be easily understandable so that they can seamlessly incorporate such evidence
in their decision process. This involves (¶) determining who uses the model outputs, and in what
way; (·) refining requirements through user surveys; and (¸) standardizing requirements into
document form by integrating the feedback.
Guideline 2: Approach Selection. While one of the advantages of out-of-the-box XAI toolkits is
that they provide some degree of convenience, it is still important for researchers to carefully con-
sider various aspects of existing explanation techniques and determine whether a given technique
could be adapted for their task to prevent the oversimplification of the problem, or whether the
creation of a new technique should be considered. As such, this step involves (¶) determining suit-
able explanation techniques based on task fitness, model compatibility, and stakeholder preference;
and (·) accounting for the combination of different formats of explanation. Additionally, all steps
should be thoroughly documented to support replication.
Guideline 3: Multi-Dimensional Evaluation. Explainability is a multi-faceted concept. Thus,
this step requires (¶) carefully choosing metrics, especially quantitative measures beyond accuracy,
for the task; (·) testing the approach against well-constructed benchmarks; and (¸) ensuring it has

ACM Comput. Surv., Vol. 58, No. 4, Article 95. Publication date: October 2025.

A Systematic Literature Review on Explainability for ML/DL-based Software Engineering 95:25

reached optimum capability. Such a multi-dimensional overview could be implemented as a radar
chart that comprehensively and concisely conveys the strengths and weaknesses of the explanation
approach. Similar to the previous step, researchers should strive to both include the details of their
evaluation plan as well as provide rationale for the choices made.
Guideline 4: Feedback-Driven Optimization. In addition to quantitative evaluation, it is also
crucial to investigate the usability of XAI techniques from a human-centric view. This step demon-
strates a meaningful attempt to intuitively understand how the proposed approach would perform
in a real-world scenario. Here, researchers should integrate XAI4SE solutions into developers’ daily
development workflows gradually, and conduct empirical studies, such as interviews, question-
naires, and observation of developers using these techniques in real-world scenarios, to gather
rich user experiences. Such feedback helps to identify pain points that can further enhance user
satisfaction.
Guideline 5: Legal and Ethical Considerations. The final step involves properly evaluating the
potential legal and ethical implications before deploying XAI techniques in the wild. Specifically, it is
necessary to ensure your data collection process is compliant, privacy-preserving, and unbiased [167,
168]. Moreover, it is also important to carefully consider the possible consequences of inaccurate
explanations. Therefore, researchers should take appropriate measures, e.g., conducting audits in a
regular manner, to minimize any risks of this kind.

8 Conclusion
Explainability remains a pivotal area of interest within the SE community, particularly as increas-
ingly advanced AI models rapidly advance the field. This article conducts an SLR of 108 primary
studies on XAI4SE research from top-tier SE and AI conferences and journals. Initially, we for-
mulated a series of RQs aimed at exploring the application of XAI techniques in SE. Our analysis
began by highlighting SE tasks that have significantly benefited from XAI, illustrating the tangible
contributions of XAI (RQ1). Subsequently, we delved into the variety of XAI techniques applied
to SE tasks, examining their unique characteristics and output formats (RQ2). Following this, we
investigated the existing benchmarks, including available baselines, prevalent benchmarks, and
commonly employed evaluation metrics, to determine their validity and trustworthiness (RQ3).

Despite the significant contributions made to date, this review also uncovers certain limitations
and challenges inherent in existing XAI4SE research, offering a set of guidelines that delineate
promising avenues for future exploration. It is our aspiration that this SLR equips future SE
researchers with the essential knowledge and insights required for innovative applications of XAI.

References
[1] Shamsa Abid, Xuemeng Cai, and Lingxiao Jiang. 2023. Interpreting CodeBERT for semantic code clone detection. In

Proceedings of the 30th Asia-Pacific Software Engineering Conference (APSEC). IEEE, 229–238.
[2] Jubril Gbolahan Adigun, Tom Philip Huck, Matteo Camilli, and Michael Felderer. 2023. Risk-driven online testing and

test case diversity analysis for ML-enabled critical systems. In Proceedings of the 34th IEEE International Symposium
on Software Reliability Engineering (ISSRE). IEEE, 344–354.

[3] Alejandro Barredo Arrieta, Natalia Díaz Rodríguez, Javier Del Ser, Adrien Bennetot, Siham Tabik, Alberto Barbado,
Salvador García, Sergio Gil-Lopez, Daniel Molina, Richard Benjamins, et al. 2020. Explainable artificial intelligence
(XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Information Fusion 58 (2020),
82–115.

[4] Md. Abdul Awal and Chanchal K. Roy. 2024. EvaluateXAI: A framework to evaluate the reliability and consistency of
rule-based XAI techniques for software analytics tasks. Journal of Systems and Software 217 (2024), 112159.

[5] Sebastian Bach, Alexander Binder, Grégoire Montavon, Frederick Klauschen, Klaus-Robert Müller, and Wojciech
Samek. 2015. On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PloS
One 10, 7 (2015), e0130140.

ACM Comput. Surv., Vol. 58, No. 4, Article 95. Publication date: October 2025.

95:26 S. Cao et al.

[6] Lili Bo, Yuting He, Xiaobing Sun, Wangjie Ji, and Xiaohan Wu. 2024. A software bug fixing approach based on
knowledge-enhanced large language models. In Proceedings of the 24th IEEE International Conference on Software
Quality, Reliability and Security (QRS). IEEE, 169–179.

[7] Nadia Burkart and Marco F. Huber. 2021. A survey on the explainability of supervised machine learning. Journal of
Artificial Intelligence Research 70 (2021), 245–317.

[8] Sicong Cao, Xiaobing Sun, Lili Bo, Ying Wei, and Bin Li. 2021. BGNN4VD: Constructing bidirectional graph neural-
network for vulnerability detection. Information and Software Technology 136 (2021), 106576.

[9] Sicong Cao, Xiaobing Sun, Xiaoxue Wu, David Lo, Lili Bo, Bin Li, and Wei Liu. 2024. Coca: Improving and explaining
graph neural network-based vulnerability detection systems. In Proceedings of the 46th IEEE/ACM International
Conference on Software Engineering (ICSE). ACM, 155:1–155:13.

[10] Sicong Cao, Xiaobing Sun, Xiaoxue Wu, David Lo, Lili Bo, Bin Li, Xiaolei Liu, Xingwei Lin, and Wei Liu. 2024. Snopy:
Bridging sample denoising with causal graph learning for effective vulnerability detection. In Proceedings of the 39th
IEEE/ACM International Conference on Automated Software Engineering (ASE). ACM, 606–618.

[11] Di Chen, Wei Fu, Rahul Krishna, and Tim Menzies. 2018. Applications of psychological science for actionable analytics.
In Proceedings of the 26th ACM Joint Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/SIGSOFT). ACM, 456–467.

[12] Simin Chen, Zexin Li, Wei Yang, and Cong Liu. 2024. DeciX: Explain deep learning based code generation applications.
Proceedings of the ACM on Software Engineering 1, FSE (2024), 2424–2446.

[13] Baijun Cheng, Shengming Zhao, Kailong Wang, Meizhen Wang, Guangdong Bai, Ruitao Feng, Yao Guo, Lei Ma,
and Haoyu Wang. 2024. Beyond Fidelity: Explaining Vulnerability Localization of Learning-Based Detectors. ACM
Transactions on Software Engineering and Methodology 33, 5 (2024), 127:1–127:33.

[14] Shyam R. Chidamber and Chris F. Kemerer. 1994. A metrics suite for object oriented design. IEEE Transactions on
Software Engineering 20, 6 (1994), 476–493.

[15] Zhaoyang Chu, Yao Wan, Qian Li, Yang Wu, Hongyu Zhang, Yulei Sui, Guandong Xu, and Hai Jin. 2024. Graph
neural networks for vulnerability detection: A counterfactual explanation. In Proceedings of the 33rd ACM SIGSOFT
International Symposium on Software Testing and Analysis (ISSTA). ACM, 389–401.

[16] Jürgen Cito, Isil Dillig, Seohyun Kim, Vijayaraghavan Murali, and Satish Chandra. 2021. Explaining mispredictions of
machine learning models using rule induction. In Proceedings of the 29th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE). ACM, 716–727.

[17] Jürgen Cito, Isil Dillig, Vijayaraghavan Murali, and Satish Chandra. 2022. Counterfactual explanations for models of
code. In Proceedings of the 44th IEEE/ACM International Conference on Software Engineering: Software Engineering in
Practice (ICSE-SEIP). IEEE, 125–134.

[18] Norman Cliff. 1993. Dominance statistics: Ordinal analyses to answer ordinal questions. Psychological Bulletin 114, 3
(1993), 494.

[19] Fabiano Dalpiaz, Davide Dell’Anna, Fatma Basak Aydemir, and Sercan Çevikol. 2019. Requirements classification with
interpretable machine learning and dependency parsing. In Proceedings of the 27th IEEE International Requirements
Engineering Conference (RE). IEEE, 142–152.

[20] Hoa Khanh Dam, Truyen Tran, and Aditya Ghose. 2018. Explainable software analytics. In Proceedings of the 40th
International Conference on Software Engineering: New Ideas and Emerging Results (ICSE-(NIER). ACM, 53–56.

[21] Raphaël Dang-Nhu. 2020. PLANS: Neuro-symbolic program learning from videos. In Proceedings of the 34th Annual
Conference on Neural Information Processing Systems (NeurIPS).

[22] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of deep bidirectional
transformers for language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies (NAACL-HLT). Association for Computational
Linguistics, 4171–4186.

[23] Jianshu Ding, Guisheng Fan, Huiqun Yu, and Zijie Huang. 2021. Automatic identification of high impact bug report by
test smells of textual similar bug reports. In Proceedings of the 21st IEEE International Conference on Software Quality,
Reliability and Security (QRS). IEEE, 446–457.

[24] Ruomeng Ding, Chaoyun Zhang, Lu Wang, Yong Xu, Minghua Ma, Xiaomin Wu, Meng Zhang, Qingjun Chen, Xin
Gao, Xuedong Gao, et al. 2023. TraceDiag: Adaptive, interpretable, and efficient root cause analysis on large-scale
microservice systems. In Proceedings of the 31th ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (ESEC/FSE). ACM, 1762–1773.

[25] Yi Ding, Ahsan Pervaiz, Michael Carbin, and Henry Hoffmann. 2021. Generalizable and interpretable learning for
configuration extrapolation. In Proceedings of the 29th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (ESEC/FSE). ACM, 728–740.

[26] Geanderson Esteves dos Santos, Eduardo Figueiredo, Adriano Veloso, Markos Viggiato, and Nivio Ziviani. 2020.
Understanding machine learning software defect predictions. Automated Software Engineering 27, 3 (2020), 369–392.

ACM Comput. Surv., Vol. 58, No. 4, Article 95. Publication date: October 2025.

A Systematic Literature Review on Explainability for ML/DL-based Software Engineering 95:27

[27] Finale Doshi-Velez and Been Kim. 2018. Considerations for evaluation and generalization in interpretable machine
learning. Explainable and Interpretable Models in Computer Vision and Machine Learning (2018), 3–17.

[28] Finale Doshi-Velez and Been Kim. 2018. Towards A Rigorous Science of Interpretable Machine Learning. 1–13.
arXiv:1702.08608. Retrieved from https://arxiv.org/abs/1702.08608

[29] Rudresh Dwivedi, Devam Dave, Het Naik, Smiti Singhal, Omer F. Rana, Pankesh Patel, Bin Qian, Zhenyu Wen, Tejal
Shah, Graham Morgan, et al. 2023. Explainable AI (XAI): Core ideas, techniques, and solutions. ACM Computing
Surveys 55, 9 (2023), 194:1–194:33.

[30] Kevin Ellis, CatherineWong, Maxwell I. Nye, Mathias Sablé-Meyer, Lucas Morales, Luke B. Hewitt, Luc Cary, Armando
Solar-Lezama, and Joshua B. Tenenbaum. 2021. DreamCoder: Bootstrapping inductive program synthesis with wake-
sleep library learning. In Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language
Design and Implementation (PLDI). ACM, 835–850.

[31] Jiahao Fan, Yi Li, Shaohua Wang, and Tien N. Nguyen. 2020. A C/C++ code vulnerability dataset with code changes
and CVE summaries. In Proceedings of the 17th International Conference on Mining Software Repositories (MSR). ACM,
508–512.

[32] Benjamin Frész, Elena Dubovitskaya, Danilo Brajovic, Marco F. Huber, and Christian Horz. 2024. How should AI
decisions be explained? requirements for explanations from the perspective of european law. In Proceedings of the 7th
AAAI/ACM Conference on AI, Ethics, and Society (AIES). AAAI, 438–450.

[33] Jerome H. Friedman and Bogdan E. Popescu. 2008. Predictive learning via rule ensembles. The Annals of Applied
Statistics 2, 3 (2008), 916–954.

[34] Michael Fu, Van Nguyen, Chakkrit Tantithamthavorn, Trung Le, and Dinh Phung. 2023. VulExplainer: A transformer-
based hierarchical distillation for explaining vulnerability types. IEEE Transactions on Software Engineering 49, 10
(2023), 4550–4565.

[35] Michael Fu and Chakkrit Tantithamthavorn. 2023. GPT2SP: A transformer-based agile story point estimation approach.
IEEE Transactions on Software Engineering 49, 2 (2023), 611–625.

[36] Yuxiang Gao, Yi Zhu, and Qiao Yu. 2022. Evaluating the effectiveness of local explanation methods on source code-
based defect prediction models. In Proceedings of the 19th IEEE/ACM International Conference on Mining Software
Repositories (MSR). ACM, 640–645.

[37] Yuxiang Gao, Yi Zhu, and Yu Zhao. 2022. Dealing with imbalanced data for interpretable defect prediction. Information
and Software Technology 151 (2022), 107016.

[38] Mingyang Geng, Shangwen Wang, Dezun Dong, Haotian Wang, Shaomeng Cao, Kechi Zhang, and Zhi Jin. 2023.
Interpretation-based code summarization. In Proceedings of the 31st IEEE/ACM International Conference on Program
Comprehension (ICPC). IEEE, 113–124.

[39] Jiri Gesi, Xinyun Shen, Yunfan Geng, Qihong Chen, and Iftekhar Ahmed. 2023. Leveraging feature bias for scalable
misprediction explanation of machine learning models. In Proceedings of the 45th IEEE/ACM International Conference
on Software Engineering (ICSE). IEEE, 1559–1570.

[40] Amirata Ghorbani, Abubakar Abid, and James Y. Zou. 2019. Interpretation of neural networks is fragile. In Proceedings
of the 33rd AAAI Conference on Artificial Intelligence (AAAI). AAAI, 3681–3688.

[41] Bryce Goodman and Seth R. Flaxman. 2017. European union regulations on algorithmic decision-making and a “right
to explanation”. AI Magazine 38, 3 (2017), 50–57.

[42] Riccardo Guidotti, Anna Monreale, Salvatore Ruggieri, Franco Turini, Fosca Giannotti, and Dino Pedreschi. 2019. A
survey of methods for explaining black box models. ACM Computing Surveys 51, 5 (2019), 93:1–93:42.

[43] Wenbo Guo, Dongliang Mu, Jun Xu, Purui Su, Gang Wang, and Xinyu Xing. 2018. LEMNA: Explaining deep learning
based security applications. In Proceedings of the 25th ACM SIGSAC Conference on Computer and Communications
Security (CCS). ACM, 364–379.

[44] Jianjun He, Ling Xu, Yuanrui Fan, Zhou Xu, Meng Yan, and Yan Lei. 2020. Deep learning based valid bug reports
determination and explanation. In Proceedings of the 31st IEEE International Symposium on Software Reliability
Engineering (ISSRE). IEEE, 184–194.

[45] Adha Hrusto, Per Runeson, and Magnus C. Ohlsson. 2024. Autonomous monitors for detecting failures early and
reporting interpretable alerts in cloud operations. In Proceedings of the 46th International Conference on Software
Engineering: Software Engineering in Practice (ICSE-SEIP). ACM, 47–57.

[46] Yutao Hu, Suyuan Wang, Wenke Li, Junru Peng, Yueming Wu, Deqing Zou, and Hai Jin. 2023. Interpreters for GNN-
based vulnerability detection: Are we there yet?. In Proceedings of the 32nd ACM SIGSOFT International Symposium on
Software Testing and Analysis (ISSTA). ACM, 1407–1419.

[47] Qing Huang, Zishuai Li, Zhenchang Xing, Zhengkang Zuo, Xin Peng, Xiwei Xu, and Qinghua Lu. 2024. Answering
uncertain, under-specified API queries assisted by knowledge-aware human-AI dialogue. IEEE Transactions on Software
Engineering 50, 2 (2024), 280–295.

ACM Comput. Surv., Vol. 58, No. 4, Article 95. Publication date: October 2025.

https://arxiv.org/abs/1702.08608

95:28 S. Cao et al.

[48] Zijie Huang, Huiqun Yu, Guisheng Fan, Zhiqing Shao, Ziyi Zhou, and Mingchen Li. 2024. On the effectiveness of
developer features in code smell prioritization: A replication study. Journal of Systems and Software 210 (2024), 111968.

[49] Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis, and Marc Brockschmidt. 2019. Codesearchnet
challenge: Evaluating the state of semantic code search. 1–6. arXiv:1909.09436. Retrieved from https://arxiv.org/abs/
1909.09436

[50] Nan Jiang, Thibaud Lutellier, and Lin Tan. 2021. CURE: Code-aware neural machine translation for automatic program
repair. In Proceedings of the 43rd IEEE/ACM International Conference on Software Engineering (ICSE). IEEE, 1161–1173.

[51] Shuyao Jiang, Jiacheng Shen, Shengnan Wu, Yu Cai, Yue Yu, and Yangfan Zhou. 2023. Towards usable neural comment
generation via code-comment linkage interpretation: Method and empirical study. IEEE Transactions on Software
Engineering 49, 4 (2023), 2239–2254.

[52] Jirayus Jiarpakdee, Chakkrit Tantithamthavorn, and John C. Grundy. 2021. Practitioners’ perceptions of the goals
and visual explanations of defect prediction models. In Proceedings of the 18th IEEE/ACM International Conference on
Mining Software Repositories (MSR). IEEE, 432–443.

[53] Jirayus Jiarpakdee, Chakkrit Kla Tantithamthavorn, Hoa Khanh Dam, and John C. Grundy. 2022. An empirical study
of model-agnostic techniques for defect prediction models. IEEE Transactions on Software Engineering 48, 2 (2022),
166–185.

[54] Baharin Aliashrafi Jodat, Abhishek Chandar, Shiva Nejati, andMehrdad Sabetzadeh. 2024. Test generation strategies for
building failure models and explaining spurious failures. ACM Transactions on Software Engineering and Methodology
33, 4 (2024), 93:1–93:32.

[55] Alexander Kampmann, Nikolas Havrikov, Ezekiel O. Soremekun, and Andreas Zeller. 2020. When does my program do
this? learning circumstances of software behavior. In Proceedings of the 28th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE). ACM, 1228–1239.

[56] Sungmin Kang, Gabin An, and Shin Yoo. 2024. A quantitative and qualitative evaluation of llm-based explainable
fault localization. Proceedings of the ACM on Software Engineering 1, FSE (2024), 1424–1446.

[57] Wenjun Ke, Chao Wu, Xiufeng Fu, Chen Gao, and Yinyi Song. 2020. Interpretable test case recommendation based on
knowledge graph. In Proceedings of the 20th IEEE International Conference on Software Quality, Reliability and Security
(QRS). IEEE, 489–496.

[58] Bonan Kou, Shengmai Chen, Zhijie Wang, Lei Ma, and Tianyi Zhang. 2024. Do large language models pay similar
attention like human programmers when generating code? Proceedings of the ACM on Software Engineering 1, FSE
(2024), 2261–2284.

[59] Muhammad Laiq, Nauman Bin Ali, Jürgen Börstler, and Emelie Engström. 2024. Industrial adoption of machine
learning techniques for early identification of invalid bug reports. Empirical Software Engineering 29, 5 (2024), 130.

[60] Johannes Lampel, Sascha Just, Sven Apel, and Andreas Zeller. 2021. When life gives you oranges: Detecting and
diagnosing intermittent job failures at mozilla. In Proceedings of the 29th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE). ACM, 1381–1392.

[61] Gichan Lee and Scott Uk-Jin Lee. 2023. An empirical comparison of model-agnostic techniques for defect prediction
models. In Proceedings of the 30th IEEE International Conference on Software Analysis, Evolution and Reengineering
(SANER). IEEE, 179–189.

[62] Mingjie Li, Wenjia Cai, Rui Liu, YuetianWeng, Xiaoyun Zhao, CongWang, Xin Chen, Zhong Liu, Caineng Pan, Mengke
Li, et al. 2021. FFA-IR: Towards an explainable and reliable medical report generation benchmark. In Proceedings of
the 1st Neural Information Processing Systems Track on Datasets and Benchmarks (NeurIPS Datasets and Benchmarks).

[63] Rongfan Li, Bihuan Chen, Fengyi Zhang, Chao Sun, and Xin Peng. 2022. Detecting runtime exceptions by deep code
representation learning with attention-based graph neural networks. In Proceedings of the 29th IEEE International
Conference on Software Analysis, Evolution and Reengineering (SANER). IEEE, 373–384.

[64] Yangguang Li, Zhen Ming (Jack) Jiang, Heng Li, Ahmed E. Hassan, Cheng He, Ruirui Huang, Zhengda Zeng, Mian
Wang, and Pinan Chen. 2020. Predicting node failures in an ultra-large-scale cloud computing platform: An aiops
solution. ACM Transactions on Software Engineering and Methodology 29, 2 (2020), 13:1–13:24.

[65] Yi Li, Shaohua Wang, and Tien N. Nguyen. 2021. Vulnerability detection with fine-grained interpretations. In
Proceeding of the 29th ACM Joint European Software Engineering Conference and Symposium on the Foundations of
Software Engineering (ESEC/FSE). ACM, 292–303.

[66] Zhen Li, Ruqian Zhang, Deqing Zou, Ning Wang, Yating Li, Shouhuai Xu, Chen Chen, and Hai Jin. 2023. Robin: A
Novel Method to Produce Robust Interpreters for Deep Learning-Based Code Classifiers. In Proceedings of the 38th
IEEE/ACM International Conference on Automated Software Engineering (ASE). IEEE, 27–39.

[67] Zeyan Li, Nengwen Zhao, Mingjie Li, Xianglin Lu, Lixin Wang, Dongdong Chang, Xiaohui Nie, Li Cao, Wenchi Zhang,
Kaixin Sui, et al. 2022. Actionable and interpretable fault localization for recurring failures in online service systems.
In Proceedings of the 30th ACM Joint European Software Engineering Conference and Symposium on the Foundations of
Software Engineering (ESEC/FSE). ACM, 996–1008.

ACM Comput. Surv., Vol. 58, No. 4, Article 95. Publication date: October 2025.

https://arxiv.org/abs/1909.09436
https://arxiv.org/abs/1909.09436

A Systematic Literature Review on Explainability for ML/DL-based Software Engineering 95:29

[68] Yifan Liao, Ming Xu, Yun Lin, Xiwen Teoh, Xiaofei Xie, Ruitao Feng, Frank Liauw, Hongyu Zhang, and Jin Song Dong.
2024. Detecting and explaining anomalies caused by web tamper attacks via building consistency-based normality. In
Proceedings of the 39th IEEE/ACM International Conference on Automated Software Engineering (ASE). ACM, 531–543.

[69] Dayi Lin, Chakkrit Tantithamthavorn, and Ahmed E. Hassan. 2022. The impact of data merging on the interpretation
of cross-project just-in-time defect models. IEEE Transactions on Software Engineering 48, 8 (2022), 2969–2986.

[70] Hui Liu, Mingzhu Shen, Jiaqi Zhu, Nan Niu, Ge Li, and Lu Zhang. 2022. Deep learning based program generation
from requirements text: Are we there yet? IEEE Transactions on Software Engineering 48, 4 (2022), 1268–1289.

[71] Mingwei Liu, Simin Yu, Xin Peng, Xueyin Du, Tianyong Yang, Huanjun Xu, and Gaoyang Zhang. 2023. Knowledge
graph based explainable question retrieval for programming tasks. In Proceedings of the 39th IEEE International
Conference on Software Maintenance and Evolution (ICSME). IEEE, 123–135.

[72] Yue Liu, Chakkrit Tantithamthavorn, Li Li, and Yepang Liu. 2022. Explainable AI for android malware detection:
Towards understanding why the models perform so well?. In Proceedings of the IEEE 33rd International Symposium on
Software Reliability Engineering (ISSRE). IEEE, 169–180.

[73] Yue Liu, Chakkrit Tantithamthavorn, Yonghui Liu, and Li Li. 2024. On the reliability and explainability of language
models for program generation. ACM Transactions on Software Engineering and Methodology 33, 5 (2024), 126:1–126:26.

[74] Yilun Liu, Shimin Tao, Weibin Meng, Jingyu Wang, Wenbing Ma, Yuhang Chen, Yanqing Zhao, Hao Yang, and Yanfei
Jiang. 2024. Interpretable online log analysis using large language models with prompt strategies. In Proceedings of
the 32nd IEEE/ACM International Conference on Program Comprehension (ICPC). ACM, 35–46.

[75] Zhenguang Liu, Peng Qian, Xiang Wang, Lei Zhu, Qinming He, and Shouling Ji. 2021. Smart contract vulnerability
detection: From pure neural network to interpretable graph feature and expert pattern fusion. In Proceedings of the
30th International Joint Conference on Artificial Intelligence (IJCAI). 2751–2759.

[76] Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambrosio Blanco, Colin B. Clement, Dawn Drain,
Daxin Jiang, Duyu Tang, et al. 2021. CodeXGLUE: A machine learning benchmark dataset for code understanding and
generation. In Proceedings of the Neural Information Processing Systems Track on Datasets and Benchmarks 1, NeurIPS
Datasets and Benchmarks 2021.

[77] Scott M. Lundberg, Gabriel G. Erion, Hugh Chen, Alex J. DeGrave, Jordan M. Prutkin, Bala Nair, Ronit Katz, Jonathan
Himmelfarb, Nisha Bansal, and Su-In Lee. 2020. From local explanations to global understanding with explainable AI
for trees. Nature Machine Intelligence 2, 1 (2020), 56–67.

[78] Scott M. Lundberg and Su-In Lee. 2017. A unified approach to interpreting model predictions. In Proceedings of the
31st Annual Conference on Neural Information Processing Systems (NeurIPS). 4765–4774.

[79] Yingzhe Lyu, Gopi Krishnan Rajbahadur, Dayi Lin, Boyuan Chen, and Zhen Ming (Jack) Jiang. 2022. Towards a
Consistent Interpretation of AIOps Models. ACM Transactions on Software Engineering and Methodology 31, 1 (2022),
16:1–16:38.

[80] Lezhi Ma, Shangqing Liu, Yi Li, Xiaofei Xie, and Lei Bu. 2025. SpecGen: Automated generation of formal program
specifications via large language models. In Proceedings of the 47th IEEE/ACM International Conference on Software
Engineering (ICSE). IEEE.

[81] Wei Ma, Shangqing Liu, Mengjie Zhao, Xiaofei Xie, WenhanWang, Qiang Hu, Jie Zhang, and Yang Liu. 2024. Unveiling
code pre-trained models: Investigating syntax and semantics capacities. ACM Transactions on Software Engineering
and Methodology 33, 7 (2024), 169:1–169:29.

[82] Parvez Mahbub, Ohiduzzaman Shuvo, and Mohammad Masudur Rahman. 2023. Explaining software bugs leveraging
code structures in neural machine translation. In Proceedings of the 45th IEEE/ACM International Conference on Software
Engineering (ICSE). IEEE, 640–652.

[83] Vadim Markovtsev, Waren Long, Hugo Mougard, Konstantin Slavnov, and Egor Bulychev. 2019. STYLE-ANALYZER:
Fixing code style inconsistencies with interpretable unsupervised algorithms. In Proceedings of the 16th International
Conference on Mining Software Repositories (MSR). IEEE/ACM, 468–478.

[84] Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. 2022. Locating and editing factual associations in
GPT. In Proceedings of the 36th Annual Conference on Neural Information Processing Systems (NeurIPS).

[85] Ahmad Haji Mohammadkhani, Nitin Sai Bommi, Mariem Daboussi, Onkar Sabnis, Chakkrit Tantithamthavorn, and
Hadi Hemmati. 2023. A systematic literature review of explainable AI for software engineering. 1–23. arXiv:2302.06065.
Retrieved from https://arxiv.org/abs/2302.06065

[86] Grégoire Montavon, Sebastian Lapuschkin, Alexander Binder, Wojciech Samek, and Klaus-Robert Müller. 2017.
Explaining nonlinear classification decisions with deep taylor decomposition. Pattern Recognition 65 (2017), 211–222.

[87] Toshiki Mori and Naoshi Uchihira. 2019. Balancing the tradeoff between accuracy and interpretability in software
defect prediction. Empirical Software Engineering 24, 2 (2019), 779–825.

[88] Tamara Munzner. 2014. Visualization Analysis and Design. CRC Press.
[89] Azqa Nadeem, Daniël Vos, Clinton Cao, Luca Pajola, Simon Dieck, Robert Baumgartner, and Sicco Verwer. 2023. SoK:

Explainable machine learning for computer security applications. In Proceedings of the 8th IEEE European Symposium
on Security and Privacy (EuroS&P). IEEE, 221–240.

ACM Comput. Surv., Vol. 58, No. 4, Article 95. Publication date: October 2025.

https://arxiv.org/abs/2302.06065

95:30 S. Cao et al.

[90] David Nader-Palacio, Alejandro Velasco, Nathan Cooper, Alvaro Rodriguez, Kevin Moran, and Denys Poshyvanyk.
2024. Toward a theory of causation for interpreting neural code models. IEEE Transactions on Software Engineering 50,
5 (2024), 1215–1243.

[91] Meike Nauta, Jan Trienes, Shreyasi Pathak, Elisa Nguyen, Michelle Peters, Yasmin Schmitt, Jörg Schlötterer, Maurice
van Keulen, and Christin Seifert. 2023. From anecdotal evidence to quantitative evaluation methods: A systematic
review on evaluating explainable AI. ACM Computing Surveys 55, 13s (2023), 295:1–295:42.

[92] Amirmohammad Nazari, Yifei Huang, Roopsha Samanta, Arjun Radhakrishna, and Mukund Raghothaman. 2023.
Explainable program synthesis by localizing specifications. In Proceedings of the 38th Annual ACM SIGPLAN Conference
on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA). 2171–2195.

[93] Chao Ni, Xin Yin, Kaiwen Yang, Dehai Zhao, Zhenchang Xing, and Xin Xia. 2023. Distinguishing look-alike innocent
and vulnerable code by subtle semantic representation learning and explanation. In Proceedings of the 31th ACM Joint
European Software Engineering Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE).
ACM, 1611–1622.

[94] Marc North, Amir Atapour-Abarghouei, and Nelly Bencomo. 2024. Code gradients: Towards automated traceability
of llm-generated code. In Proceedings of the 32nd IEEE International Requirements Engineering Conference (RE). IEEE,
321–329.

[95] Ipek Ozkaya and James Ivers. 2019. AI for software engineering. In Proceedings of the SEI Educator’s Workshop.
[96] David N. Palacio, Dipin Khati, Daniel Rodríguez-Cárdenas, Alejandro Velasco, and Denys Poshyvanyk. 2025. On

explaining (large) language models for code using global code-based explanations. 1–12. arXiv:2503.16771. Retrieved
from https://arxiv.org/abs/2503.16771

[97] Matteo Paltenghi, Rahul Pandita, Austin Z. Henley, and Albert Ziegler. 2024. Follow-up attention: An empirical study
of developer and neural model code exploration. IEEE Transactions on Software Engineering 50, 10 (2024), 2568–2582.

[98] Matteo Paltenghi and Michael Pradel. 2021. Thinking like a developer? comparing the attention of humans with neural
models of code. In Proceedings of the 36th IEEE/ACM International Conference on Automated Software Engineering
(ASE). IEEE, 867–879.

[99] Cristiano Patrício, João C. Neve, and Luís F. Teixeira. 2023. Explainable deep learning methods in medical image
classification: A survey. ACM Computing Surveys 56, 4 (2023), 85:1–85:41.

[100] Fabiano Pecorelli, Fabio Palomba, Foutse Khomh, and Andrea De Lucia. 2020. Developer-driven code smell prioritiza-
tion. In Proceedings of the 17th International Conference on Mining Software Repositories (MSR). ACM, 220–231.

[101] Naser Peiravian and Xingquan Zhu. 2013. Machine learning for android malware detection using permission and
API calls. In Proceedings of the 25th IEEE International Conference on Tools with Artificial Intelligence (ICTAI). IEEE
Computer Society, 300–305.

[102] Kewen Peng and Tim Menzies. 2022. Defect reduction planning (using timelime). IEEE Transactions on Software
Engineering 48, 7 (2022), 2510–2525.

[103] Chanathip Pornprasit, Chakkrit Tantithamthavorn, Jirayus Jiarpakdee, Michael Fu, and Patanamon Thongtanunam.
2021. PyExplainer: Explaining the predictions of just-in-time defect models. In Proceedings of the 36th IEEE/ACM
International Conference on Automated Software Engineering (ASE). IEEE, 407–418.

[104] Md. Rafiqul Islam Rabin, Vincent J. Hellendoorn, and Mohammad Amin Alipour. 2021. Understanding neural code
intelligence through program simplification. In Proceedings of the 29th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE). ACM, 441–452.

[105] Dilini Rajapaksha, Chakkrit Tantithamthavorn, Jirayus Jiarpakdee, Christoph Bergmeir, John Grundy, and Wray L.
Buntine. 2022. SQAPlanner: Generating data-informed software quality improvement plans. IEEE Transactions on
Software Engineering 48, 8 (2022), 2814–2835.

[106] Rui Ren, Jinbang Yang, Linxiao Yang, Xinyue Gu, and Liang Sun. 2024. SLIM: A scalable and interpretable light-weight
fault localization algorithm for imbalanced data in microservice. In Proceedings of the 39th IEEE/ACM International
Conference on Automated Software Engineering (ASE). ACM, 27–39.

[107] Xiaoxue Ren, Zhenchang Xing, Xin Xia, David Lo, Xinyu Wang, and John Grundy. 2019. Neural network-based detec-
tion of self-admitted technical debt: From performance to explainability. ACM Transactions on Software Engineering
and Methodology 28, 3 (2019), 15.

[108] Marco Túlio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. “Why should i trust you?”: Explaining the predictions
of any classifier. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD). ACM, 1135–1144.

[109] Daniel Rodríguez-Cárdenas, David N. Palacio, Dipin Khati, Henry Burke, and Denys Poshyvanyk. 2023. Benchmarking
causal study to interpret large language models for source code. In Proceedings of the 39th IEEE International Conference
on Software Maintenance and Evolution (ICSME). IEEE, 329–334.

[110] Cynthia Rudin. 2019. Stop explaining black boxmachine learningmodels for high stakes decisions and use interpretable
models instead. Nature Machine Intelligence 1, 5 (2019), 206–215.

ACM Comput. Surv., Vol. 58, No. 4, Article 95. Publication date: October 2025.

https://arxiv.org/abs/2503.16771

A Systematic Literature Review on Explainability for ML/DL-based Software Engineering 95:31

[111] Cynthia Rudin and Joanna Radin. 2019. Why are we using black box models in AI when we don’t need to? a lesson
from an explainable AI competition. Harvard Data Science Review 1, 2 (2019), 1–9.

[112] Nayan B. Ruparelia. 2010. Software development lifecycle models. ACM SIGSOFT Software Engineering Notes 35, 3
(2010), 8–13.

[113] Jaydeb Sarker, Sayma Sultana, Steven R. Wilson, and Amiangshu Bosu. 2023. ToxiSpanSE: An explainable toxicity
detection in code review comments. In Proceedings of the 17th ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement (ESEM). IEEE, 1–12.

[114] Lukas Schulte, Benjamin Ledel, and Steffen Herbold. 2024. Studying the explanations for the automated prediction of
bug and non-bug issues using LIME and SHAP. Empirical Software Engineering 29, 4 (2024), 93.

[115] Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh, and Dhruv Batra.
2020. Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of
Computer Vision 128, 2 (2020), 336–359.

[116] Emad Shihab, Akinori Ihara, Yasutaka Kamei, Walid M. Ibrahim, Masao Ohira, Bram Adams, Ahmed E. Hassan, and
Ken-ichi Matsumoto. 2013. Studying re-opened bugs in open source software. Empirical Software Engineering 18, 5
(2013), 1005–1042.

[117] Jiho Shin, Reem Aleithan, Jaechang Nam, Junjie Wang, Nima Shiri Harzevili, and SongWang. 2023. An empirical study
on the stability of explainable software defect prediction. In Proceedings of the 30th Asia-Pacific Software Engineering
Conference (APSEC). IEEE, 141–150.

[118] Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. 2017. Learning important features through propagat-
ing activation differences. In Proceedings of the 34th International Conference on Machine Learning (ICML). PMLR,
3145–3153.

[119] Timo Speith. 2022. A review of taxonomies of explainable artificial intelligence (XAI) methods. In Proceedings of the
2022 ACM Conference on Fairness, Accountability, and Transparency (FAccT). 2239–2250.

[120] Thilo Spinner, Udo Schlegel, Hanna Schäfer, and Mennatallah El-Assady. 2020. explAIner: A visual analytics framework
for interactive and explainable machine learning. IEEE Transactions on Visualization and Computer Graphics 26, 1
(2020), 1064–1074.

[121] M. Srinivas and Lalit M. Patnaik. 1994. Adaptive probabilities of crossover and mutation in genetic algorithms. IEEE
Transactions on Systems, Man, and Cybernetics 24, 4 (1994), 656–667.

[122] Mateusz Staniak and Przemyslaw Biecek. 2018. Explanations of model predictions with live and breakdown packages.
R J. 10, 2 (2018), 395.

[123] Jiamou Sun, Zhenchang Xing, Qinghua Lu, Xiwei Xu, Liming Zhu, Thong Hoang, and Dehai Zhao. 2023. Silent
vulnerable dependency alert prediction with vulnerability key aspect explanation. In Proceedings of the 45th IEEE/ACM
International Conference on Software Engineering (ICSE). IEEE, 970–982.

[124] Ruoxi Sun, Minhui Xue, Gareth Tyson, Tian Dong, Shaofeng Li, Shuo Wang, Haojin Zhu, Seyit Camtepe, and Surya
Nepal. 2023. Mate! are you really aware? an explainability-guided testing framework for robustness of malware
detectors. In Proceedings of the 31th ACM Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE). ACM, 1573–1585.

[125] Yongqian Sun, Zihan Lin, Binpeng Shi, Shenglin Zhang, ShiyuMa, Pengxiang Jin, Zhenyu Zhong, Lemeng Pan, Yicheng
Guo, and Dan Pei. 2024. Interpretable failure localization for microservice systems based on graph autoencoder. ACM
Transactions on Software Engineering and Methodology 34, 2 (2025), 52:1–52:28.

[126] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. 2017. Axiomatic attribution for deep networks. In Proceedings of the
34th International Conference on Machine Learning (ICML). PMLR, 3319–3328.

[127] Sahil Suneja, Yufan Zhuang, Yunhui Zheng, Jim Laredo, Alessandro Morari, and Udayan Khurana. 2023. Incorporating
signal awareness in source code modeling: An application to vulnerability detection. ACM Transactions on Software
Engineering and Methodology 32, 6 (2023), 145:1–145:40.

[128] Ben Tang, Bin Li, Lili Bo, Xiaoxue Wu, Sicong Cao, and Xiaobing Sun. 2021. GrasP: Graph-to-sequence learning for
automated program repair. In Proceedings of the 21st IEEE International Conference on Software Quality, Reliability and
Security (QRS). IEEE, 819–828.

[129] Dimitrios Tsoukalas, Nikolaos Mittas, Elvira-Maria Arvanitou, Apostolos Ampatzoglou, Alexander Chatzigeorgiou,
and Dionysios D. Kehagias. 2024. Local and global explainability for technical debt identification. IEEE Transactions
on Software Engineering 50, 8 (2024), 2110–2123.

[130] Michael van Lent, William Fisher, and Michael Mancuso. 2004. An explainable artificial intelligence system for
small-unit tactical behavior. In Proceedings of the 19th National Conference on Artificial Intelligence, 16th Conference on
Innovative Applications of Artificial Intelligence (AAAI/IAAI). AAAI/ The MIT, 900–907.

[131] Alejandro Velasco, David N. Palacio, Daniel Rodríguez-Cárdenas, and Denys Poshyvanyk. 2024. Which syntactic
capabilities are statistically learned by masked language models for code?. In Proceedings of the 44th ACM/IEEE
International Conference on Software Engineering: New Ideas and Emerging Results (ICSE-NEIR). ACM, 72–76.

ACM Comput. Surv., Vol. 58, No. 4, Article 95. Publication date: October 2025.

95:32 S. Cao et al.

[132] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua Bengio. 2018. Graph
attention networks. In Proceedings of the 6th International Conference on Learning Representations (ICLR).

[133] Yao Wan, Jingdong Shu, Yulei Sui, Guandong Xu, Zhou Zhao, Jian Wu, and Philip S. Yu. 2019. Multi-modal attention
network learning for semantic source code retrieval. In Proceedings of the 34th IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE, 13–25.

[134] Yao Wan, Wei Zhao, Hongyu Zhang, Yulei Sui, Guandong Xu, and Hai Jin. 2022. What do they capture? - A structural
analysis of pre-trained language models for source code. In Proceedings of the 44th IEEE/ACM International Conference
on Software Engineering (ICSE). ACM, 2377–2388.

[135] Chong Wang, Xin Peng, Zhenchang Xing, Yue Zhang, Mingwei Liu, Rong Luo, and Xiujie Meng. 2023. XCoS:
Explainable code search based on query scoping and knowledge graph. ACM Transactions on Software Engineering
and Methodology 32, 6 (2023), 140:1–140:28.

[136] Haoye Wang, Zhipeng Gao, Xing Hu, David Lo, John Grundy, and Xinyu Wang. 2024. Just-in-time todo-missed
commits detection. IEEE Transactions on Software Engineering 50, 11 (2024), 2732–2752.

[137] Qinqin Wang, Hanbing Yan, and Zhihui Han. 2021. Explainable APT attribution for malware using NLP techniques.
In Proceedings of the 21st IEEE International Conference on Software Quality, Reliability and Security (QRS). IEEE, 70–80.

[138] XinWang, Jin Liu, Li Li, Xiao Chen, Xiao Liu, and HaoWu. 2020. Detecting and explaining self-admitted technical debts
with attention-based neural networks. In Proceedings of the 35th IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE, 871–882.

[139] Yu Wang, Ke Wang, and Linzhang Wang. 2023. An explanation method for models of code. In Proceedings of the 38th
Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA).
801–827.

[140] SupatsaraWattanakriengkrai, PatanamonThongtanunam, Chakkrit Tantithamthavorn, Hideaki Hata, and Kenichi Mat-
sumoto. 2022. Predicting defective lines using a model-agnostic technique. IEEE Transactions on Software Engineering
48, 5 (2022), 1480–1496.

[141] WilliamWebber, Alistair Moffat, and Justin Zobel. 2010. A similarity measure for indefinite rankings.ACM Transactions
on Information Systems 28, 4 (2010), 20:1–20:38.

[142] Katharina Weitz, Dominik Schiller, Ruben Schlagowski, Tobias Huber, and Elisabeth André. 2019. “Do you trust me?”:
Increasing user-trust by integrating virtual agents in explainable AI interaction design. In Proceedings of the 19th
ACM International Conference on Intelligent Virtual Agents (IVA). ACM, 7–9.

[143] Ratnadira Widyasari, Jia Wei Ang, Truong Giang Nguyen, Neil Sharma, and David Lo. 2024. Demystifying faulty
code: Step-by-step reasoning for explainable fault localization. In Proceedings of the 31st IEEE International Conference
on Software Analysis, Evolution and Reengineering (SANER). IEEE, 568–579.

[144] Ratnadira Widyasari, Gede Artha Azriadi Prana, Stefanus A. Haryono, Yuan Tian, Hafil Noer Zachiary, and David Lo.
2022. XAI4FL: Enhancing spectrum-based fault localization with explainable artificial intelligence. In Proceedings of
the 30th IEEE/ACM International Conference on Program Comprehension (ICPC). ACM, 499–510.

[145] Frank Wilcoxon. 1992. Individual comparisons by ranking methods. In Proceedings of the Breakthroughs in Statistics:
Methodology and Distribution. Springer, 196–202.

[146] Jan De Winter. 2010. Explanations in software engineering: The pragmatic point of view. Minds and Machines 20, 2
(2010), 277–289.

[147] Bozhi Wu, Sen Chen, Cuiyun Gao, Lingling Fan, Yang Liu, Weiping Wen, and Michael R. Lyu. 2021. Why an android
app is classified as malware: Toward malware classification interpretation. ACM Transactions on Software Engineering
and Methodology 30, 2 (2021), 21:1–21:29.

[148] Chunqiu Steven Xia and Lingming Zhang. 2024. Automated program repair via conversation: Fixing 162 out of 337
bugs for $0.42 each using chatgpt. In Proceedings of the 33rd ACM SIGSOFT International Symposium on Software
Testing and Analysis (ISSTA). ACM, 819–831.

[149] Wenxin Xiao, Hao He, Weiwei Xu, Yuxia Zhang, and Minghui Zhou. 2023. How early participation determines
long-term sustained activity in github projects?. In Proceedings of the 31th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE). ACM, 29–41.

[150] Xinqiang Xie, Xiaochun Yang, Bin Wang, and Qiang He. 2022. DevRec: Multi-relationship embedded software
developer recommendation. IEEE Transactions on Software Engineering 48, 11 (2022), 4357–4379.

[151] Fengyu Yang, Guangdong Zeng, Fa Zhong, Peng Xiao, Wei Zheng, and Fuxing Qiu. 2024. CfExplainer: Explainable
just-in-time defect prediction based on counterfactuals. Journal of Systems and Software 218 (2024), 112182.

[152] Fengyu Yang, Guangdong Zeng, Fa Zhong, Wei Zheng, and Peng Xiao. 2023. Interpretable software defect prediction
incorporating multiple rules. In Proceedings of the 30th IEEE International Conference on Software Analysis, Evolution
and Reengineering (SANER). IEEE, 940–947.

[153] Jia Yang, Cai Fu, Fengyang Deng, Ming Wen, Xiaowei Guo, and Chuanhao Wan. 2023. Toward interpretable graph
tensor convolution neural network for code semantics embedding. ACM Transactions on Software Engineering and
Methodology 32, 5 (2023), 115:1–115:40.

ACM Comput. Surv., Vol. 58, No. 4, Article 95. Publication date: October 2025.

A Systematic Literature Review on Explainability for ML/DL-based Software Engineering 95:33

[154] Lanxin Yang, Jinwei Xu, Yifan Zhang, He Zhang, and Alberto Bacchelli. 2023. EvaCRC: Evaluating code review
comments. In Proceedings of the 31th ACM Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE). ACM, 275–287.

[155] Zhou Yang, Zhensu Sun, Terry Zhuo Yue, Premkumar Devanbu, and David Lo. 2024. Robustness, security, privacy,
explainability, efficiency, and usability of large language models for code. 1–35. arXiv:2403.07506. Retrieved from
https://arxiv.org/abs/2403.07506

[156] Zhenhe Yao, Changhua Pei, Wenxiao Chen, Hanzhang Wang, Liangfei Su, Huai Jiang, Zhe Xie, Xiaohui Nie, and
Dan Pei. 2024. Chain-of-event: Interpretable root cause analysis for microservices through automatically learning
weighted event causal graph. In Companion Proceedings of the 32nd ACM International Conference on the Foundations
of Software Engineering (FSE). ACM, 50–61.

[157] Suraj Yatish, Jirayus Jiarpakdee, Patanamon Thongtanunam, and Chakkrit Tantithamthavorn. 2019. Mining Software
Defects: Should We Consider Affected Releases?. In Proceedings of the 41st International Conference on Software
Engineering (ICSE). /ACM, 654–665.

[158] Wei Jie Yeo, Wihan van der Heever, Rui Mao, Erik Cambria, Ranjan Satapathy, and Gianmarco Mengaldo. 2023. A
comprehensive review on financial explainable AI. Artificial Intelligence Review 58, 6 (2025), 189.

[159] Xin Yin, Chongyang Shi, and Shuxin Zhao. 2021. Local and global feature based explainable feature envy detection.
In Proceedings of the IEEE 45th Annual Computers, Software, and Applications Conference (COMPSAC). IEEE, 942–951.

[160] Zhitao Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec. 2019. GNNExplainer: Generating
explanations for graph neural networks. In Proceedings of the 33rd Annual Conference on Neural Information Processing
Systems (NeurIPS). 9240–9251.

[161] Hao Yu, Yiling Lou, Ke Sun, Dezhi Ran, Tao Xie, Dan Hao, Ying Li, Ge Li, and Qianxiang Wang. 2022. Automated
assertion generation via information retrieval and its integration with deep learning. In Proceedings of the 44th
IEEE/ACM 44th International Conference on Software Engineering (ICSE). ACM, 163–174.

[162] Jinqiang Yu, Michael Fu, Alexey Ignatiev, Chakkrit Tantithamthavorn, and Peter Stuckey. 2024. A formal explainer for
just-in-time defect predictions. ACM Transactions on Software Engineering and Methodology 33, 7 (2024), 187:1–187:31.

[163] Andreas Zeller and Ralf Hildebrandt. 2002. Simplifying and isolating failure-inducing input. IEEE Transactions on
Software Engineering 28, 2 (2002), 183–200.

[164] Zhengran Zeng, Yuqun Zhang, Yong Xu, Minghua Ma, Bo Qiao, Wentao Zou, Qingjun Chen, Meng Zhang, Xu Zhang,
Hongyu Zhang, et al. 2023. TraceArk: Towards actionable performance anomaly alerting for online service systems.
In Proceedings of the 45th IEEE/ACM International Conference on Software Engineering: Software Engineering in Practice
(ICSE-SEIP). IEEE, 258–269.

[165] He Zhang, MuhammadAli Babar, and Paolo Tell. 2011. Identifying relevant studies in software engineering. Information
and Software Technology 53, 6 (2011), 625–637.

[166] Jian Zhang, Shangqing Liu, Xu Wang, Tianlin Li, and Yang Liu. 2023. Learning to locate and describe vulnerabilities.
In Proceedings of the 38th IEEE/ACM International Conference on Automated Software Engineering (ASE). IEEE, 332–344.

[167] Jiale Zhang, Chengcheng Zhu, Chunpeng Ge, Chuan Ma, Yanchao Zhao, Xiaobing Sun, and Bing Chen. 2024. Bad-
Cleaner: Defending backdoor attacks in federated learning via attention-based multi-teacher distillation. IEEE Trans-
actions on Dependable and Secure Computing 21, 5 (2024), 4559–4573.

[168] Jiale Zhang, Chengcheng Zhu, Xiaobing Sun, Chunpeng Ge, Bing Chen, Willy Susilo, and Shui Yu. 2024. FLPurifier:
Backdoor defense in federated learning via decoupled contrastive training. IEEE Transactions on Information Forensics
and Security 19 (2024), 4752–4766.

[169] Ting Zhang, Ivana Clairine Irsan, Ferdian Thung, and David Lo. 2025. Revisiting sentiment analysis for software
engineering in the era of large language models. ACM Transactions on Software Engineering and Methodology 34, 3
(2025), 60:1–60:30.

[170] Zhuo Zhang, Yan Lei, Meng Yan, Yue Yu, Jiachi Chen, Shangwen Wang, and Xiaoguang Mao. 2022. Reentrancy
vulnerability detection and localization: A deep learning based two-phase approach. In Proceedings of the 37th
IEEE/ACM International Conference on Automated Software Engineering (ASE). ACM, 83:1–83:13.

[171] Haiyan Zhao, Hanjie Chen, Fan Yang, Ninghao Liu, Huiqi Deng, Hengyi Cai, Shuaiqiang Wang, Dawei Yin, and
Mengnan Du. 2024. Explainability for large language models: A survey. ACM Transactions on Intelligent Systems and
Technology 15, 2 (2024), 20:1–20:38.

[172] Nengwen Zhao, Junjie Chen, Zhou Wang, Xiao Peng, Gang Wang, Yong Wu, Fang Zhou, Zhen Feng, Xiaohui Nie,
Wenchi Zhang, et al. 2020. Real-time incident prediction for online service systems. In Proceedings of the 28th ACM
Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE).
ACM, 315–326.

[173] Nengwen Zhao, Honglin Wang, Zeyan Li, Xiao Peng, Gang Wang, Zhu Pan, Yong Wu, Zhen Feng, Xidao Wen, Wenchi
Zhang, et al. 2021. An empirical Investigation of Practical Log Anomaly Detection for Online Service Systems. In
Proceedings of the 29th ACM Joint European Software Engineering Conference and Symposium on the Foundations of
Software Engineering (ESEC/FSE). ACM, 1404–1415.

ACM Comput. Surv., Vol. 58, No. 4, Article 95. Publication date: October 2025.

https://arxiv.org/abs/2403.07506

95:34 S. Cao et al.

[174] Wei Zheng, Tianren Shen, Xiang Chen, and Peiran Deng. 2022. Interpretability application of the just-in-time software
defect prediction model. Journal of Systems and Software 188 (2022), 111245.

[175] Jiayuan Zhou, Michael Pacheco, Jinfu Chen, Xing Hu, Xin Xia, David Lo, and Ahmed E. Hassan. 2023. CoLeFunDa:
Explainable silent vulnerability fix identification. In Proceedings of the 45th IEEE/ACM International Conference on
Software Engineering (ICSE). IEEE, 2565–2577.

[176] Yaqin Zhou, Shangqing Liu, Jing Kai Siow, Xiaoning Du, and Yang Liu. 2019. Devign: Effective vulnerability identifica-
tion by learning comprehensive program semantics via graph neural networks. In Proceedings of the 33rd Annual
Conference on Neural Information Processing Systems (NeurIPS). 10197–10207.

[177] Deqing Zou, Yawei Zhu, Shouhuai Xu, Zhen Li, Hai Jin, and Hengkai Ye. 2021. Interpreting deep learning-based
vulnerability detector predictions based on heuristic searching. ACM Transactions on Software Engineering and
Methodology 30, 2 (2021), 23:1–23:31.

Received 26 January 2024; revised 3 June 2025; accepted 29 July 2025

ACM Comput. Surv., Vol. 58, No. 4, Article 95. Publication date: October 2025.

	1 Introduction
	2 XAI: Preliminaries
	2.1 Definition
	2.2 Taxonomy

	3 RQ1: What Types of AI4SE Studies Have Been Explored for Explainability?
	3.1 How XAI Are Used in Specific SE Tasks?
	3.1.1 SE Tasks in Software Requirements and Design
	3.1.2 SE Tasks in Software Development
	3.1.3 SE Tasks in Software Testing
	3.1.4 SE Tasks in Software Maintenance
	3.1.5 SE Tasks in Software Management

	3.2 Exploratory Data Analysis

	4 RQ2: How XAI Techniques Are Used to Support SE Tasks?
	4.1 RQ2a: What Types of XAI Techniques Are Employed to Generate Explanations?
	4.1.1 Exploratory Data Analysis.

	4.2 RQ2b: What Format of Explanation Is Provided for Various SE Tasks?
	4.2.1 Exploratory Data Analysis

	5 RQ3: How Well Do XAI Techniques Perform in Supporting Various SE Tasks?
	5.1 RQ3a: What Baseline Techniques Are Used to Evaluate XAI4SE Approaches?
	5.2 RQ3b: What Benchmarks Are Used for These Comparisons?
	5.3 RQ3c: What Evaluation Metrics Are Employed to Measure XAI4SE Approaches?

	6 Discussion
	6.1 Challenges
	6.2 Opportunities

	7 Guidelines for Future Work on XAI4SE
	8 Conclusion
	References

