
The Best of Both Worlds: Integrating
Semantic Features with Expert Features

for Smart Contract Vulnerability
Detection

Xingwei Lin1, Mingxuan Zhou2, Sicong Cao2(B), Jiashui Wang1,3,
and Xiaobing Sun2

1 Ant Group, Hangzhou 310000, China
xwlin.roy@gmail.com, jiashui.wjs@antgroup.com

2 College of Information Engineering, Yangzhou University, Yangzhou 225009, China
MZ120220958@stu.yzu.edu.cn, {DX120210088,xbsun}@yzu.edu.cn

3 Polytechnic Institute, Zhejiang University, Hangzhou 310015, China

Abstract. Over the past few years, smart contract suffers from serious
security threats of vulnerabilities, resulting in enormous economic losses.
What’s worse, due to the immutable and irreversible features, vulnera-
ble smart contracts which have been deployed in the the blockchain can
only be detected rather than fixed. Conventional approaches heavily rely
on hand-crafted vulnerability rules, which is time-consuming and dif-
ficult to cover all the cases. Recent deep learning approaches alleviate
this issue but fail to explore the integration of them together to boost
the smart contract vulnerability detection yet. Therefore, we propose
to build a novel model, SmartFuSE, for the smart contract vulnera-
bility detection by leveraging the best of semantic features and expert
features. SmartFuSE performs static analysis to respectively extract
vulnerability-specific expert patterns and joint graph structures at the
function-level to frame the rich program semantics of vulnerable code,
and leverages a novel graph neural network with the hybrid attention
pooling layer to focus on critical vulnerability features. To evaluate
the effectiveness of our proposed SmartFuSE, we conducted exten-
sive experiments on 40k contracts in two benchmarks. The experimen-
tal results demonstrate that SmartFuSE can significantly outperform
state-of-the-art analysis-based and DL-based detectors.

Keywords: Smart contract · Vulnerability detection · Code
representation Learning · Graph neural network · Expert features

1 Introduction

Smart contracts are programs or transaction protocols which automatically exe-
cute on the blockchain [21]. The decentralization and trustworthy properties of
smart contract have attracted considerable attention from different industries,
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
J. Chen et al. (Eds.): BlockSys 2023, CCIS 1897, pp. 17–31, 2024.
https://doi.org/10.1007/978-981-99-8104-5_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8104-5_2&domain=pdf
https://doi.org/10.1007/978-981-99-8104-5_2


18 X. Lin et al.

and are used to support many tasks such as access control, task management
or data management [9,22,35]. Taking the most famous blockchain platform
Ethereum [31] as an example, there are more than 1.5 million smart contracts
have been deployed [23].

However, due to several properties [29], smart contract is more vulnerable to
attacks than traditional software programs [5,36]. On the one hand, the trans-
parency of smart contracts expose a large attack surface to hackers, allowing
them to call a smart contract with no limitations. On the other hand, as the
blockchain is immutable and irreversible, once a vulnerable smart contract is
deployed on the blockchain, it neither can be repaired nor interrupted. Consid-
ering the serious impact of smart contract vulnerabilities [6], timely detection of
smart contract vulnerabilities is necessary and urgent.

Conventional smart contract vulnerability detection approaches often adopt
static or dynamic analysis techniques. Unfortunately, these approaches funda-
mentally rely on several fixed expert rules, while the manually defined patterns
bear the inherent risk of being error-prone and some complex patterns are non-
trivial to be covered. Recently, benefiting from the powerful performance of
Deep Learning (DL), a number of approaches [3,24,25,37] have been proposed
to leverage DL models to learn program semantics to identify potential vul-
nerabilities. However, existing DL-based detection approaches fail to precisely
model and extract critical features related to vulnerabilities, leading to unsatis-
factory results, i.e., either missing vulnerabilities or giving overwhelmingly false
positives.

To cope with the aforementioned challenges, in this paper, we propose a
novel approach, called SmartFuSE, which captures the distinguishing features
of Smart contract vulnerabilities by Fusing Semantic features with Expert fea-
tures. In particular, SmartFuSE firstly performs static analysis to respectively
extract vulnerability-specific expert patterns and joint graph structures at the
function-level to frame the rich program semantics of vulnerable code. Consid-
ering that even a single function could have hundreds lines of code, which may
introduce much noise, SmartFuSE performs forward and backward slicing from
the program point of interest based on control- and data-dependence to extract
vulnerability-related code snippets. Second, we leverage Gated Graph Neural
Network (GGNN) with hybrid attention pooling layer to focus on critical vul-
nerability features and suppress unimportant ones via the attention mechanism.
Finally, the local expert features and global semantic features are fused to pro-
duce the final vulnerability detection results. To evaluate the effectiveness of our
proposed SmartFuSE, we conducted extensive experiments on 40k contracts in
two benchmarks. The experimental results demonstrate that SmartFuSE can
significantly outperform state-of-the-art analysis-based and DL-based detectors.

The main contributions can be summarized as follows:

– We propose to characterize the contract function source code as graph rep-
resentations. To focus on vulnerability-related features, we employ several
expert patterns and program slicing to capture local and global vulnerability
semantics.



The Best of Both Worlds 19

– We propose a novel DL-based smart contract vulnerability detection tech-
nique, SmartFuSE, with a fusion model to extract the distinguishing fea-
tures from global semantic features and local expert features of source code.

– We comprehensively investigate the value of integrating the semantic features
and expert features for smart contract vulnerability detection. The results
indicate that SmartFuSE outperforms the state-of-the-art approaches.

2 Background

2.1 Smart Contract Vulnerabilities

In this work, we concentrate on the following three common types of vulnerabil-
ities in smart contract.

Reentrancy vulnerability occurs when the caller contract is simultaneously
entered twice. In traditional programs, the execution is atomic when called a
non-recursive function and there will be no new function execution before the
current function execution ends. However, in smart contract, the malicious callee
external contract may reenter the caller before the caller contract finishes when
conducting an external function call.

Timestamp dependence vulnerability happens when block.timestamp is
leveraged to trigger certain critical operations, e.g., generating specific numbers.
Since the miners in the blockchain has the freedom to adjust the timestamp of
the block as long as it is within a short time interval, they may manipulate the
block timestamps to gain illegal benefits.

Infinite loop vulnerability, which unintentionally iterates forever, occurs
when a smart contract contains a loop statement with no (or unreachable) exit
condition. Such vulnerability will consume a lot of gas but all the gas is consumed
in vain since the execution is unable to change any state.

2.2 Graph Neural Networks

Due to the outstanding ability in learning program semantics, Graph Neural Net-
works (GNNs) have been applied to a variety of security-related tasks achieved
great breakthroughs. Modern GNNs follow a neighborhood aggregation scheme,
where the representation of a node is updated by iteratively aggregating repre-
sentations of its k-hop neighbors, to capture the structural information of graphs.
This procedure can be formulated by:

h(t)
v = σ

(
h(t−1)
v , AGG(t)

({
h(t−1)
u : u ∈ N (v)

}))
(1)

where h(t)
v is the feature representation of node v at the t-th iteration,

u ∈ N (v) is the neighbors of v, and AGG(·) and σ(·) denote aggregation (e.g.,
MEAN) and activation (e.g., ReLU) functions for node feature computation.

According to different goals, the final node representation h
(T )
v can be used

for graph classification, node classification, and link prediction [33].



20 X. Lin et al.

Graph Classification. Given a graph Gi = (V,E,X) ∈ G and a set of graph
labels L = {l1, · · · , lm}, where each node v ∈ V is represented by a real-valued
feature vector xv ∈ X and m denotes the number of graph labels, graph classi-
fication aims to learn a mapping function f : G → L to predict the label of the
i-th graph Gi.

Node Classification. Given a graph Gj = (V,E,X) ∈ G and its node label set
L = {l1, · · · , ln}, node classification aims to learn a mapping function g : V → L
to predict the label of node v.

Link Prediction. Given node u and node v, link prediction aims to predict the
probability of connection between node u and node v by yu,v = φ

(
h(k)
u ,h(k)

v

)
,

where h(k)
u and h(k)

v are the node representations after k iterations of aggregation
and φ(·) refers to the composition operator such as Inner Production.

Considering that existing GNNs suffer from the long-term dependency issue,
which prevents nodes from effectively transferring messages, our work builds on
Gated Graph Neural Network (GGNN) [15]. GGNN uses a gated recurrent unit
to remember the key features. This allows GGNN to go deeper than other GNNs.
So this deeper model has a powerful ability to learn more semantics features from
graph data.

Fig. 1. The overall workflow of our approach.

3 Our Approach

The overview of our proposed approach is illustrated in Fig. 1, which consists
of three components: 1) feature extraction, where vulnerability-specific expert
patterns are obtained by adopting a fully automatic tool proposed by Liu et al.



The Best of Both Worlds 21

[17] and semantic features are extracted with GGNN with a hybrid attention
pooling layer; 2) integrated feature learning is proceeded with a fully connected
layer, and 3) vulnerability detection is to predict the vulnerable smart contracts
at the function-level with previously learned features. Details of SmartFuSE
are presented in the following subsections.

3.1 Feature Extraction

Feature extraction aims at converting the statistical data (i.e., expert features)
and code representations (i.e., semantic features) into numeric representation
that can be adapted to the deep neural network models to capture the distin-
guishing characteristics for the later vulnerability detection tasks.

Expert Feature Extraction. Expert features are a set of descriptive rules
defined by experts according to their understanding of security-critical program-
ming patterns with their professional knowledge and experience. In the literature,
dozens of expert features have been defined from various dimensions (e. g., vul-
nerability types, security operations). The nine features (presented in Table 1)
defined by Liu et al. [17] specific to three common smart contract vulnerabilities
have been demonstrated for their effectiveness. Therefore, we follow the state-
of-the-art work to adopt the nine expert features as an important part to mine
the integrated features of source code for smart contract vulnerability detection.

Table 1. Studied nine common vulnerability-specific expert features.

Vulnerability Type Expert pattern Security-Critical Operations

Reentrancy enoughBalance call.value invocation
callValueInvocation a function that contains call.value
balanceDeduction the variable: correspond to user balance

Timestamp dependence timestampInvocation block.timestamp invocation
timestampAssign block.number invocation
timestampContaminate a variable: affect critical operation

Infinite loop loopStatement for
loopCondition while
selfInvocation self-call function

Semantic Feature Extraction. Semantic features represent the theoretical
units of meaning-holding components which are used for representing word
meaning, and capture the meaning of tokens in code as well as their contexts(e.g.,
semantic and syntactic structural information of code), that have been widely
used to represent the intrinsic characteristics of code mined with DL models. In
this work, we adopt a widely-used abstract representation Code Property Graph
(CPG) [34], which merges Abstract Syntax Tree (AST), Control Flow Graph
(CFG), and Program Dependence Graph (PDG) into a joint data structure, to



22 X. Lin et al.

reserve sufficient syntax and semantic features of source code. In addition, con-
sidering that a single function usually contains dozens of code lines while the
vulnerability exists only in one or several lines of code, we further perform back-
ward and forward program slicing [30] based on CPG from a program point of
interest to filter noise induced by irrelevant statements. Our slice criteria can be
divided into two categories: sensitive operations and sensitive data. For example,
sensitive operations such as .delegatecall or .call will call an external contract
may which may be malicious, while sensitive data are the insecure data which
hackers can manipulate (e.g., block.number, block.timestamp). The details of our
slice criteria are listed in Table 2.

Table 2. Studied eight common vulnerability-specific expert features.

Slice Criteria Example

block info block.number, block.gaslimit
delegatecall address.delegatecall
arithmetic operations ∗,+,−
external function call address.call
selfdestruct operation selfdestruct
input address parameters address input_address
block timestamp block.timestamp
low level call operation address.call

3.2 Integrated Feature Learning

With the expert and semantic features extracted in different ways, SmartFuSE
further needs to encode them into feature vectors and learn their integrated fea-
tures. For local expert features, we adopt a feed-forward neural network (FNN)
as feature encoders. For global semantic features, we utilize GGNN with a hybrid
attention pooling layer to transform sliced contract graphs into deeper graph fea-
tures. Then, the expert features and semantic features are merged by using a
fusion network for vulnerability detection.

Local Expert Feature Learning. Each expert pattern formulates an elemen-
tary factor closely related to a specific vulnerability. We utilize One-Hot Encod-
ing to represent each pattern, i.e., “0”/“1” indicates whether the function under
test has this pattern or not, respectively. The vectors for all patterns related to
a specific vulnerability are concatenated into a final vector x. The final vector
x and the ground truth of whether the function has the specific vulnerability as
the target label will be fed into a feed-forward neural network ψ(·) with a convo-
lution layer and a max pooling layer to extract its corresponding d-dimensional
expert feature Er. The convolutional layer learns to assign different weights to



The Best of Both Worlds 23

different elements of the semantic vector, while the max pooling layer highlights
the significant elements and avoids overfitting [16].

Global Semantic Feature Learning. To learn the global semantic feature
from the sliced code graph, we firstly use Word2Vec [19] as the embedding model
to convert each token v into an initial d-dimensional vector representation xv ∈
R

d. Then we use GGNN as the graph-level feature encoder to learn semantic
features across the graph structure.

As GGNN is a recurrent neural network, the feature learning at time t aggre-
gate features for node v from its neighbors along graph edges to get the aggre-
gated features a

(t)
v :

a(t)
v = AT

v [h
(t−1)T
1 , ..., h(t−1)T

m ] + b (2)

where b is a bias and Av is the adjacent matrix of node v with learnable weights.
In addition, limited by the one-way message propagation mechanism of

GNNs, rich contextual information that essential for vulnerability detection in
smart contract may be ignored. Following existing works [1,4], we also propose
to conduct the adjacency matrix for a graph with both incoming and outgoing
edges for each node. The aggregated feature a

(t)
v of node v at time t will be put

into the gated recurrent unit (GRU) with the node’s previous feature vector at
time t − 1 to get its current feature vector h

(t)
v :

h(t)
v = GRU(a(t)

v , h(t−1)
v ) (3)

This computation iterate by T times. Then, we use the state vectors com-
puted by the last time step as the final node representations. The generated
node features from the gated graph recurrent layers can be used as input to any
prediction layer, e.g., for graph-level prediction in this work, and then the whole
model can be trained in an end-to-end fashion. Considering that the importance
of each node is different, we propose to use the hybrid attention graph pooling
that combines self-attention pooling and global attention pooling to generate
the final graph-level semantic feature Sr.

We first use a hierarchical self-attention graph pooling layer [14] to generate
graph-level features from the most task-related nodes in a graph by self-attention
mechanism. The self-attention pooling layer is consists of three blocks. In each
block, it first calculates the attention score by a graph convention layer for each
node. Then it picks up the top-k nodes based on the value of the attention score to
construct a more task-related subgraph, which will be put into an average pooling
to generate a subgraph-level feature. Finally, combining all these three blocks’
subgraph-level features, it can get a graph-level feature htop−K . Such hierarchical
self-attention graph pooling can extract the most task-related features from all
nodes, but just selecting top-K nodes from the graph may lose some global
information. Thus, we add a global attention pooling layer to complement the
whole graph feature. In this layer, we propose to conduct the global graph feature
by the weighted sum of all nodes features. As shown in Eq. (4), we use a Multi-
Layer Perceptron (MLP) to compute the attention score for each node’s feature



24 X. Lin et al.

and use and a Softmax to get the weight for each node. By weighted sum all
nodes’ features, we get the global graph feature hglobal for each function.

hglobal =
N∑
i=0

Softmax
(
MLP

(
h
(T )
i

))
∗ h

(T )
i (4)

Combining the most task-related graph feature and global graph feature, we
get the final graph-level semantic feature Sr by Sr = htop−K + hglobal.

Feature Fusion. After obtaining the local expert feature Pr and the global
semantic feature Sr of the contract, we fuse them into the final feature Xr by
using a convolution layer and a max pooling layer:

Xr = Pr ⊕ Sr (5)

where ⊕ denotes concatenation operation.

3.3 Vulnerability Detection

With the learned integrated features Xr, the last step of SmartFuSE is to train
a vulnerability detection model that will be applied to smart contracts under test.
To this end, the learned integrated features are first fed into a network consisting
of three fully connected layers and a sigmoid layer for the binary classification
task:

ỹ = sigmoid(FC(Xr)) (6)

where the fully connected layer FC(·) and the non-linear sigmoid layer produce
the final estimated label ỹ. If the function is vulnerable, the value of ỹ will be
labeled as “1”, otherwise labeled as “0”.

4 Experiments

4.1 Research Questions

To evaluate the performance of SmartFuSE, we design the following research
questions:

RQ1: To what extent smart contract vulnerability detection performance
can SmartFuSE achieve?

RQ2: How do the integrated expert and semantic features affect the perfor-
mance of smart contract vulnerability detection models?

RQ3: Can our proposed GGNN with hybrid attention pooling capture
vulnerability-related program semantics?

4.2 Dataset

Following existing works [17,37], we built our evaluation benchmark by merging
two real-world smart contract datasets, ESC and VSC.



The Best of Both Worlds 25

4.3 Baselines

We selected five conventional analysis-based detectors and two state-of-the-art
DL-based vulnerability detection approaches.

– Oyente [18] applies symbolic execution on the CFG of smart contract to
check pre-defined vulnerable patterns.

– Mythril [20] combines multiple analysis techniques, such as concolic analysis
and taint analysis, for smart contract vulnerability detection.

– Smartcheck [26] converts AST to a XML parse tree as an intermediate rep-
resentation, and then check pre-defined vulnerability patterns on this inter-
mediate representation.

– Securify [27] statically analyzes EVM bytecode to infer contract by Souffle
Datalog solver to prove some pre-defined safety properties are satisfied.

– Slither [7] converts a contract to a specific intermediate representation
named SlithIR, then doing the pre-defined vulnerability patterns match on
this SlithIR representation.

– Peculiar [32] is a DL-based vulnerability detection tool which converts a
contract to a crucial data flow graph and puts it into the GraphCodeBERT
model for vulnerability detection.

– TMP [37] converts a contract to a normalized graph and then utilizes a deep
learning model named temporal message propagation network for vulnerabil-
ity detection.

4.4 Experimental Setup

Implementation. All the experiments are conducted on a server with an
NVIDIA Tesla V100 GPU and an Intel(R) Core(TM) i9-12900k @3.90GHz with
64 GB of RAM. The AST generate tool is implemented with typescript based on
solc-typed-ast package, while CFG and PDG is conducted by Slither [7]. We use
the pre-trained embedding model provided by SmartEmbed [8] to do the token
embedding, and the GGNN model is implemented with python based on the dgl
library [28]. The dimension of the vector representation of each node is set to
128 and the dropout is set to 0.2. ADAM [13] optimization algorithm is used to
train the model with the learning rate of 0.001. The pool rate for self attention
pooling layer is 0.5.

Evaluation Metrics. We apply the following four widely used evaluation met-
rics to measure the effectiveness of our approach and the other competitors.

– Accuracy (Acc) evaluates the performance that how many instances can
be correctly labeled. It is calculated as: Acc = TP+TN

TP+FP+TN+FN .
– Precision (Pre) is the fraction of true vulnerabilities among the detected

ones. It is defined as: Pre = TP
TP+FP .

– Recall (Rec) measures how many vulnerabilities can be correctly detected.
It is calculated as: Rec = TP

TP+FN .
– F1-score (F1) is the harmonic mean of Recall and Precision, and can be

calculated as: F1 = 2 ∗ Rec∗Pre
Rec+Pre .



26 X. Lin et al.

5 Experimental Results

5.1 Experiments for Answering RQ1

Table 3 shows the overall results (the best performances are also highlighted in
bold.) of each baseline and SmartFuSE on smart contract vulnerability detec-
tion in terms of the aforementioned evaluation metrics. Overall, SmartFuSE
outperforms all of the five referred analysis-based detectors and two DL-based
approaches.

Table 3. Evaluation results in percentage compared with state-of-the-art detectors.

Method Accuracy Precision Recall F1-score

Oyente 57.3 41.1 42.8 41.9
Mythril 53.9 64.7 36.4 46.6
Securify 50.5 53.2 55.2 54.2
Smartcheck 37.8 59.4 43.5 50.2
Slither 61.9 63.1 58.4 50.7
Peculiar 82.7 55.2 41.6 47.4
TMP 85.0 83.9 66.5 74.2
SmartFuSE 91.4 88.6 94.3 91.4

We can find that the performance of bytecode-level approaches (Oyente,
Mythril, and Securify) is poor. The reason is that most semantic and syntax
features are lost during the compilation of bytecode. Compared to pattern-
based detection tools (i.e., slither, smartcheck), SmartFuSE still performs bet-
ter because these pre-defined patterns are too simple or fixed to cover all sit-
uations. By contrast, our feature fusion model can automatically learn expert
and semantic features from the representation of source code to detect different
types of vulnerabilities.

In addition, we can also find that SmartFuSE outperforms two DL-based
detection approaches (Peculiar [32] and TMP [37]) in terms of all evaluation
metrics. The reason is that although both Peculiar and TMP utilize the graph
to represent the smart contract code like SmartFuSE, neither of them can com-
prehensively and precisely capture the vulnerability-related syntax and semantic
features inside the code. In particular, Peculiar [32] only uses the data flow alone
to represent the smart contract code, which may lose several critical features such
as control flow between statements. Thus, such a one-sided code representation
approach makes the DL model hard to capture all potential vulnerability pat-
terns from such insufficient vulnerability-related features.



The Best of Both Worlds 27

5.2 Experiments for Answering RQ2

Table 4. Comparing results on vulnerability detection with different features.

Setting Accuracy Precision Recall F1-score

Expert Features 86.9 84.3 90.2 87.1
Semantic Features 83.2 81.5 88.6 84.9
SmartFuSE 91.4 88.6 94.3 91.4

We set three training scenarios (i.e., expert features, semantic features, and
their Fusion) to train SmartFuSE for assessing the effectiveness of integrated
features on boosting vulnerability detection. The experimental dataset is set the
same as the experiment of RQ1 (i.e., 80%-10%-10% for training, validation, and
testing). The comparison results are reported in Table 4 and the best perfor-
mances are highlighted in bold for each approach on three different settings.

Obviously, we can observe that both expert features and semantic features
have their own advantages in building an accurate prediction model, and expert
features seem to have a better understanding of code characteristics than seman-
tic features in the domain of smart contract vulnerability detection, revealing
that incorporating security patterns is necessary and important to improve the
performance. Furthermore, we can observe that combining semantic features
with expert patterns indeed achieves better results compared to their pure
semantic features counterparts. For example, SmartFuSE respectively gains
a 9.86% accuracy and 7.66% F1 improvements over its variant with the pure
neural network model, demonstrating the effectiveness of combining semantic
features with expert patterns.

5.3 Experiments for Answering RQ3

Table 5. Comparing results on vulnerability detection with different pooling layers.

Setting Accuracy Precision Recall F1-score

Sum Pooling 75.7 74.7 83.6 87.1
Avg Pooling 80.1 78.4 87.4 84.9
Global Attention Pooling 83.8 81.6 89.5 87.1
Self Attention Pooling 87.6 84.2 92.6 84.9
SmartFuSE 91.4 88.6 94.3 91.4

We further investigate the impact of our graph feature learning module with
a hybrid attention pooling layer by comparing it with its variant. Towards this,



28 X. Lin et al.

we use the pooling without attention, such as sum pooling and average pooling as
the baseline, then conduct ablation experiments targeting the hybrid attention
mechanism (i.e., respectively removing self-attention and global attention).

The comparison of our model with different pooling layers are shown in
Table 5. We can see that our hybrid attention graph pooling layer get significant
improvements in smart contract vulnerability detection task. The experimental
results show that using pooling with attention mechanism can be more effective
than other no-attention pooling layers. In addition, we can observe that com-
pared to global and self attention pooling, the hybrid attention pooling is more
effective than using them alone. The reason is that these two attention mecha-
nisms are complementary, and combining them can improve the effectiveness.

6 Related Work

Traditional approaches employ static analysis or formal approaches to detect
vulnerabilities [2,7,10,26]. For example, Slizer [7] and SmartCheck [26] are detec-
tors of vulnerability patterns, which can perform static analysis on many types
of source code. Bhargavan et al. [2] proposes a language-based formal approach
to verify the safety and the functional correctness of smart contracts. Hirai et
al. [10] proposed an interactive theorem prover to verify some safety properties
of Ethereum smart contracts.

Another aspect of the work depends on symbol analysis and dynamic execu-
tion. Oyente [18] is the first symbol execution tool, which directly works with
EVM byte code without access to corresponding source code. Zeus [12] employs
both abstract interpretation and symbolic model checking to verify the correct-
ness and fairness of smart contracts. ContractFuzzer [11] randomly generates test
cases to identify vulnerabilities through fuzzing and runtime behavior monitor-
ing during execution. Osiris [25] combined symbol execution and stain analysis
to detect smart contract vulnerabilities related to integers.

Recently, several studies have demonstrated the effectiveness of Deep Learn-
ing (DL) in automated smart contract vulnerability detection. Qian et al. [24]
proposed a novel attention-based BLSTM model to precisely detect reentrancy
bugs. Zhuang et al. [37] combines contract graph and graph neural networks to
detect three common smart contract vulnerabilities.

7 Conclusion

In this paper, we propose a novel approach SmartFuSE, which fully utilizes
both expert features and semantic features of source code to build a performance-
better model for smart contract vulnerability detection. We also explore the
possibility of using graph neural networks with hybrid attention mechanism to
learn precise graph features from code graphs, which contains rich vulnerability-
specific program semantics. Extensive experimental results show that our pro-
posed approach can significantly outperform existing detection approaches.



The Best of Both Worlds 29

References

1. Allamanis, M., Brockschmidt, M., Khademi, M.: Learning to represent programs
with graphs. In: Proceedings of the 6th International Conference on Learning Rep-
resentations (ICLR) (2018)

2. Bhargavan, K., et al.: Formal verification of smart contracts: short paper. In: Pro-
ceedings of the 2016 ACM Workshop on Programming Languages and Analysis for
Security, PLAS@CCS 2016, Vienna, Austria, October 24, 2016, pp. 91–96. ACM
(2016)

3. Cai, J., Li, B., Zhang, J., Sun, X., Chen, B.: Combine sliced joint graph with
graph neural networks for smart contract vulnerability detection. J. Syst. Softw.
195, 111550 (2023)

4. Cao, S., Sun, X., Bo, L., Wei, Y., Li, B.: BGNN4VD: constructing bidirectional
graph neural-network for vulnerability detection. Inf. Softw. Technol. 136, 106576
(2021)

5. Cao, S., Sun, X., Bo, L., Wu, R., Li, B., Tao, C.: MVD: memory-related vulnera-
bility detection based on flow-sensitive graph neural networks. In: Proceedings of
the 44th IEEE/ACM International Conference on Software Engineering (ICSE),
pp. 1456–1468. ACM (2022)

6. Falkon, S.: The story of the DAO - its history and consequences (2017)
7. Feist, J., Grieco, G., Groce, A.: Slither: a static analysis framework for smart

contracts. In: Proceedings of the 2nd International Workshop on Emerging Trends
in Software Engineering for Blockchain (WETSEB@ICSE), pp. 8–15. IEEE / ACM
(2019)

8. Gao, Z., Jiang, L., Xia, X., Lo, D., Grundy, J.: Checking smart contracts with
structural code embedding. IEEE Trans. Software Eng. 47(12), 2874–2891 (2021)

9. Hang, L., Kim, D.: Reliable task management based on a smart contract for runtime
verification of sensing and actuating tasks in IoT environments. Sensors 20(4), 1207
(2020)

10. Hirai, Y.: Defining the ethereum virtual machine for interactive theorem provers.
In: Brenner, M., et al. (eds.) FC 2017. LNCS, vol. 10323, pp. 520–535. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-70278-0_33

11. Jiang, B., Liu, Y., Chan, W.K.: Contractfuzzer: fuzzing smart contracts for vulner-
ability detection. In: Proceedings of the 33rd ACM/IEEE International Conference
on Automated Software Engineering (ASE), pp. 259–269. ACM (2018)

12. Kalra, S., Goel, S., Dhawan, M., Sharma, S.: ZEUS: analyzing safety of smart
contracts. In: Proceedings of the 25th Annual Network and Distributed System
Security Symposium (NDSS). The Internet Society (2018)

13. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Proceedings
of the 3rd International Conference on Learning Representations (ICLR) (2015)

14. Lee, J., Lee, I., Kang, J.: Self-attention graph pooling. In: Proceedings of the 36th
International Conference on Machine Learning (ICML), vol. 97, pp. 3734–3743
(2019)

15. Li, Y., Tarlow, D., Brockschmidt, M., Zemel, R.S.: Gated graph sequence neural
networks. In: Proceedings of the 4th International Conference on Learning Repre-
sentations (ICLR) (2016)

16. Liu, Z., Qian, P., Wang, X., Zhuang, Y., Qiu, L., Wang, X.: Combining graph
neural networks with expert knowledge for smart contract vulnerability detection.
arXiv preprint arXiv:2107.11598 (2021)

https://doi.org/10.1007/978-3-319-70278-0_33
http://arxiv.org/abs/2107.11598


30 X. Lin et al.

17. Liu, Z., Qian, P., Wang, X., Zhuang, Y., Qiu, L., Wang, X.: Combining graph
neural networks with expert knowledge for smart contract vulnerability detection.
IEEE Trans. Knowl. Data Eng. 35(2), 1296–1310 (2023)

18. Luu, L., Chu, D., Olickel, H., Saxena, P., Hobor, A.: Making smart contracts
smarter. In: Proceedings of the 23rd ACM SIGSAC Conference on Computer and
Communications Security (CCS), pp. 254–269. ACM (2016)

19. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed repre-
sentations of words and phrases and their compositionality. In: Proceedings of the
27th Annual Conference on Neural Information Processing Systems (NeurIPS), pp.
3111–3119 (2013)

20. Mueller, B.: A framework for bug hunting on the ethereum blockchain (2017)
21. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008)
22. Park, J., Youn, T., Kim, H., Rhee, K., Shin, S.: Smart contract-based review system

for an IoT data marketplace. Sensors 18(10), 3577 (2018)
23. Pierro, G.A., Tonelli, R., Marchesi, M.: An organized repository of ethereum smart

contracts’ source codes and metrics. Future Internet 12(11), 197 (2020)
24. Qian, P., Liu, Z., He, Q., Zimmermann, R., Wang, X.: Towards automated reen-

trancy detection for smart contracts based on sequential models. IEEE Access 8,
19685–19695 (2020)

25. Tann, W.J., Han, X.J., Gupta, S.S., Ong, Y.: Towards safer smart con-
tracts: a sequence learning approach to detecting vulnerabilities. arXiv preprint
arXiv:1811.06632 (2018)

26. Tikhomirov, S., Voskresenskaya, E., Ivanitskiy, I., Takhaviev, R., Marchenko, E.,
Alexandrov, Y.: Smartcheck: static analysis of ethereum smart contracts. In: Pro-
ceedings of the 1st IEEE/ACM International Workshop on Emerging Trends in
Software Engineering for Blockchain (WETSEB@ICSE), pp. 9–16. ACM (2018)

27. Tsankov, P., Dan, A.M., Drachsler-Cohen, D., Gervais, A., Bünzli, F., Vechev,
M.T.: Securify: practical security analysis of smart contracts. In: Proceedings of
the 25th ACM SIGSAC Conference on Computer and Communications Security
(CCS), pp. 67–82. ACM (2018)

28. Wang, M., et al.: Deep graph library: a graph-centric, highly-performant package
for graph neural networks. arXiv preprint arXiv:1909.01315 (2019)

29. Wei, Y., Sun, X., Bo, L., Cao, S., Xia, X., Li, B.: A comprehensive study on security
bug characteristics. J. Softw. Evol. Process. 33(10), e2376 (2021)

30. Weiser, M.: Program slicing. IEEE Trans. Softw. Eng. 10(4), 352–357 (1984)
31. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger (2014)
32. Wu, H., et al.: Peculiar: smart contract vulnerability detection based on crucial

data flow graph and pre-training techniques. In: Proceedings of the 32nd IEEE
International Symposium on Software Reliability Engineering (ISSRE), pp. 378–
389. IEEE (2021)

33. Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., Yu, P.S.: A comprehensive survey
on graph neural networks. IEEE Trans. Neural Netw. Learn. Syst. 32(1), 4–24
(2021)

34. Yamaguchi, F., Golde, N., Arp, D., Rieck, K.: Modeling and discovering vulnera-
bilities with code property graphs. In: Proceedings of the 35th IEEE Symposium
on Security and Privacy (SP), pp. 590–604. IEEE Computer Society (2014)

35. Zhang, Y., Kasahara, S., Shen, Y., Jiang, X., Wan, J.: Smart contract-based access
control for the internet of things. IEEE Internet Things J. 6(2), 1594–1605 (2019)

http://arxiv.org/abs/1811.06632
http://arxiv.org/abs/1909.01315


The Best of Both Worlds 31

36. Zhou, Y., Liu, S., Siow, J.K., Du, X., Liu, Y.: Devign: effective vulnerability identi-
fication by learning comprehensive program semantics via graph neural networks.
In: Proceedings of the 33rd Annual Conference on Neural Information Processing
Systems (NeurIPS), pp. 10197–10207 (2019)

37. Zhuang, Y., Liu, Z., Qian, P., Liu, Q., Wang, X., He, Q.: Smart contract vulnera-
bility detection using graph neural network. In: Proceedings of the Twenty-Ninth
International Joint Conference on Artificial Intelligence (IJCAI), pp. 3283–3290
(2020)


	The Best of Both Worlds: Integrating Semantic Features with Expert Features for Smart Contract Vulnerability Detection
	1 Introduction
	2 Background
	2.1 Smart Contract Vulnerabilities
	2.2 Graph Neural Networks

	3 Our Approach
	3.1 Feature Extraction
	3.2 Integrated Feature Learning
	3.3 Vulnerability Detection

	4 Experiments
	4.1 Research Questions
	4.2 Dataset
	4.3 Baselines
	4.4 Experimental Setup

	5 Experimental Results
	5.1 Experiments for Answering RQ1
	5.2 Experiments for Answering RQ2
	5.3 Experiments for Answering RQ3

	6 Related Work
	7 Conclusion
	References


